- আংশিক ভগ্নাংশের হর x^3-4x+7 হলে লব কী হবে?
- \frac{x}{(x+1)(x^2+4)} একটি মূলদ ভগ্নাংশ। এই ভগ্নাংশটিকে \frac {A}{(x+1)}+\frac{(Bx+C)}{(x^2+4)} আকারে লিখা হলো। অভেদে x এর সহগ সমীকৃত করলে কোন সমীকরণ পাওয়া যাবে?
- x^2 এর সহগ সমীকৃত করলে কোন সমীকরণ পাওয়া যাবে?
- \frac{1}{x(x^2+1)^2} এর আংশিক ভগ্নাংশ কয়টি?
- x^4+7x^3+17x^2+17x+6 \space এর উৎপাদক কোনটি?
- \frac{1}{x(x^2+1)^2} একটি রাশি। এর আংশিক ভগ্নাংশ হবে-\\ i.\space \frac{A}{x}\\ ii. \space \frac{A}{x^2+1}\\ iii. \space \frac{Ax+B}{(x^2+1)^2}\\ নিচের কোনটি সঠিক?
- আংশিক ভগ্নাংশের হর ত্রিঘাত রাশি হলে লব কয়ঘাতী হবে?
- হর একঘাতী রাশির তৃতীয় ঘাত হলে কয়টি আংশিক ভগ্নাংশ পাওয়া যাবে?
- f(p,q,r)=p^3+q^3+r^3-3pqr\space একটি ফাংশন। x = b + c - a, y = c + a - b, z = a + b - c হলে, f(x, y, z):f(a, b, c) = ?
- b^2c^2(b^2-c^2)+c^2a^2(b^2-c^2)+a^2b^2(b^2-c^2) এর উৎপাদক নয় কোনটি?
১. সেট ও ফাংশন
২. বীজগাণিতিক রাশি
- চলক, ধ্রুবক, বহুপদী, এক চলকের বহুপদী
- চলক, ধ্রুবক, বহুপদী, এক চলকের বহুপদী
- ভাগশেষ উপপাদ্য, উৎপাদক উপপাদ্য
- ভাগশেষ উপপাদ্য, উৎপাদক উপপাদ্য
- উৎপাদক উপপাদ্য গাণিতিক উদাহরণ
- উৎপাদক উপপাদ্য গাণিতিক উদাহরণ
- চক্র-ক্রমিক রাশি,চক্র-ক্রমিক বহুপদীর উৎপাদকে বিশ্লেষণ
- চক্র-ক্রমিক রাশি,চক্র-ক্রমিক বহুপদীর উৎপাদকে বিশ্লেষণ
- মূলদ ভগ্নাংশের সরল
- মূলদ ভগ্নাংশের সরল
- আংশিক ভগ্নাংশ - ১
- আংশিক ভগ্নাংশ ১
- আংশিক ভগ্নাংশ - ২
- আংশিক ভগ্নাংশ ২
- আংশিক ভগ্নাংশ - ৩
- আংশিক ভগ্নাংশ ৩
৫. সমীকরণ
- (৫.১) - দ্বিঘাত সমীকরণের সমাধান
- (৫.১)- দ্বিঘাত সমীকরণের সমাধান
- (৫.২) - বর্গমূল যুক্ত সমীকরণের সমাধান
- (৫.২)- বর্গমূল যুক্ত সমীকরণের সমাধান
- (৫.৩) - সূচক সমীকরণের সমাধান
- (৫.৩)- সূচক সমীকরণের সমাধান
- (৫.৪) - দুই চলক বিশিষ্ট দ্বিঘাত সমীকরণ
- (৫.৪)- দুই চলক বিশিষ্ট দ্বিঘাত সমীকরণ
- (৫.৫) - দ্বিঘাত সমীকরণের ব্যবহার - ১
- (৫.৫)- দ্বিঘাত সমীকরণের ব্যবহার - ১
- (৫.৫) - দ্বিঘাত সমীকরণের ব্যবহার - ২
- (৫.৫)- দ্বিঘাত সমীকরণের ব্যবহার - ২
- (৫.৬) - দুই চলক বিশিষ্ট সূচক সমীকরণ
- (৫.৬)- দুই চলক বিশিষ্ট সূচক সমীকরণ
- (৫.৭) - লেখচিত্রের সাহায্যে দ্বিঘাত সমীকরণের সমাধান
- (৫.৭)- লেখচিত্রের সাহায্যে দ্বিঘাত সমীকরণের সমাধান
৬. অসমতা
৭. অসীম ধারা
৮. ত্রিকোণমিতি
- কোণ পরিমাপের পদ্ধতি এবং ধনাত্মক ও ঋণাত্মক কোণ
- কোণ পরিমাপের পদ্ধতি এবং ধনাত্মক ও ঋণাত্মক কোণ
- রেডিয়ান কোণ, প্রতিজ্ঞা- ১,২,৩,৪
- রেডিয়ান কোণ, প্রতিজ্ঞা- ১,২,৩,৪
- (৮.১) - গাণিতিক উদাহরণ
- (৮.১) - গাণিতিক উদাহরণ
- চতুর্ভাগ সম্পর্কিত অনুপাত ও গাণিতিক উদাহরণ
- চতুর্ভাগ সম্পর্কিত অনুপাত ও গাণিতিক উদাহরণ
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ২
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ২
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ২
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ২
১০. দ্বিপদী বিস্তৃতি
- দ্বিপদী বিস্তৃতি, দ্বিপদী সহগ ও প্যাসকেলের ত্রিভুজের ব্যবহার
- দ্বিপদী বিস্তৃতি, দ্বিপদী সহগ ও প্যাসকেলের ত্রিভুজের ব্যবহার
- প্যাসকেলের ত্রিভুজ ও দ্বিপদী উপপাদ্যের গাণিতিক উদাহরণ
- প্যাসকেলের ত্রিভুজ ও দ্বিপদী উপপাদ্যের গাণিতিক উদাহরণ
- (x+y)ⁿ এর বিস্তৃতি
- (x+y)ⁿ এর বিস্তৃতি
- n! এবং ⁿCᵣ এর মান নির্ণয়
- n! এবং ⁿCᵣ এর মান নির্ণয়
- গাণিতিক উদাহরণ
- গাণিতিক উদাহরণ
১২. সমতলীয় ভেক্টর
- ভেক্টর সংক্রান্ত প্রাথমিক ধারণা, ত্রিভুজ, সামান্তরিক বিধি
- ভেক্টর সংক্রান্ত প্রাথমিক ধারণা, ত্রিভুজ, সামান্তরিক বিধি
- ভেক্টর বিয়োগের ত্রিভুজ বিধি,শূন্য ভেক্টর
- ভেক্টর বিয়োগের ত্রিভুজ বিধি,শূন্য ভেক্টর
- ভেক্টর এর সকল বিধি এবং অবস্থান ভেক্টর
- ভেক্টর এর সকল বিধি এবং অবস্থান ভেক্টর
- গাণিতিক উদাহরণ - ১
- গাণিতিক উদাহরণ - ১
- গাণিতিক উদাহরণ - ২
- গাণিতিক উদাহরণ - ২