- (x+\frac{1}{2x})^n এখানে n একটি জোড় সংখ্যা। এই তথ্যের ভিত্তিতে প্রশ্ন নং ১-২ উত্তর কর। n = 5 হলে, তৃতীয় পদের সহগের মান কত?
- n = 7 হলে, ষষ্ঠ এবং সপ্তম পদে x এর ঘাতের পার্থক্য নির্ণয় কর।
- (1+x)^8 একটি দ্বিপদী। x=0.01 হলে প্রথম তিন পদের সমষ্টি কত?
- (1+x)^8 এর বিস্তৃতির সাহায্যে (1.01)^8 এর মান নির্ণয় কর।
- (x+y)^n এর বিস্তৃতিতে তৃতীয় পদ 10x^3y^2 হলে n এর মান নির্ণয় কর।
- (x^2 + \frac{1}{x^2} + 2)^4 এর বিস্তৃতিতে তৃতীয় পদের সহগ কত?
- (a^3 + 3a^2b + 3ab^2 + b^3)^2 এর বিস্তৃতিতে চতুর্থ পদের মান কত?
- (x+\frac{2}{x^2})^6 এর x মুক্ত পদ কত?
- (x+y)^n এর প্রথম পদ কী?
- (x+y)^n এর দ্বিতীয় পদের সহগ কী?
১. সেট ও ফাংশন
২. বীজগাণিতিক রাশি
- চলক, ধ্রুবক, বহুপদী, এক চলকের বহুপদী
- চলক, ধ্রুবক, বহুপদী, এক চলকের বহুপদী
- ভাগশেষ উপপাদ্য, উৎপাদক উপপাদ্য
- ভাগশেষ উপপাদ্য, উৎপাদক উপপাদ্য
- উৎপাদক উপপাদ্য গাণিতিক উদাহরণ
- উৎপাদক উপপাদ্য গাণিতিক উদাহরণ
- চক্র-ক্রমিক রাশি,চক্র-ক্রমিক বহুপদীর উৎপাদকে বিশ্লেষণ
- চক্র-ক্রমিক রাশি,চক্র-ক্রমিক বহুপদীর উৎপাদকে বিশ্লেষণ
- মূলদ ভগ্নাংশের সরল
- মূলদ ভগ্নাংশের সরল
- আংশিক ভগ্নাংশ - ১
- আংশিক ভগ্নাংশ ১
- আংশিক ভগ্নাংশ - ২
- আংশিক ভগ্নাংশ ২
- আংশিক ভগ্নাংশ - ৩
- আংশিক ভগ্নাংশ ৩
৫. সমীকরণ
- (৫.১) - দ্বিঘাত সমীকরণের সমাধান
- (৫.১)- দ্বিঘাত সমীকরণের সমাধান
- (৫.২) - বর্গমূল যুক্ত সমীকরণের সমাধান
- (৫.২)- বর্গমূল যুক্ত সমীকরণের সমাধান
- (৫.৩) - সূচক সমীকরণের সমাধান
- (৫.৩)- সূচক সমীকরণের সমাধান
- (৫.৪) - দুই চলক বিশিষ্ট দ্বিঘাত সমীকরণ
- (৫.৪)- দুই চলক বিশিষ্ট দ্বিঘাত সমীকরণ
- (৫.৫) - দ্বিঘাত সমীকরণের ব্যবহার - ১
- (৫.৫)- দ্বিঘাত সমীকরণের ব্যবহার - ১
- (৫.৫) - দ্বিঘাত সমীকরণের ব্যবহার - ২
- (৫.৫)- দ্বিঘাত সমীকরণের ব্যবহার - ২
- (৫.৬) - দুই চলক বিশিষ্ট সূচক সমীকরণ
- (৫.৬)- দুই চলক বিশিষ্ট সূচক সমীকরণ
- (৫.৭) - লেখচিত্রের সাহায্যে দ্বিঘাত সমীকরণের সমাধান
- (৫.৭)- লেখচিত্রের সাহায্যে দ্বিঘাত সমীকরণের সমাধান
৬. অসমতা
৭. অসীম ধারা
৮. ত্রিকোণমিতি
- কোণ পরিমাপের পদ্ধতি এবং ধনাত্মক ও ঋণাত্মক কোণ
- কোণ পরিমাপের পদ্ধতি এবং ধনাত্মক ও ঋণাত্মক কোণ
- রেডিয়ান কোণ, প্রতিজ্ঞা- ১,২,৩,৪
- রেডিয়ান কোণ, প্রতিজ্ঞা- ১,২,৩,৪
- (৮.১) - গাণিতিক উদাহরণ
- (৮.১) - গাণিতিক উদাহরণ
- চতুর্ভাগ সম্পর্কিত অনুপাত ও গাণিতিক উদাহরণ
- চতুর্ভাগ সম্পর্কিত অনুপাত ও গাণিতিক উদাহরণ
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ২
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ২
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ২
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ২
১০. দ্বিপদী বিস্তৃতি
- দ্বিপদী বিস্তৃতি, দ্বিপদী সহগ ও প্যাসকেলের ত্রিভুজের ব্যবহার
- দ্বিপদী বিস্তৃতি, দ্বিপদী সহগ ও প্যাসকেলের ত্রিভুজের ব্যবহার
- প্যাসকেলের ত্রিভুজ ও দ্বিপদী উপপাদ্যের গাণিতিক উদাহরণ
- প্যাসকেলের ত্রিভুজ ও দ্বিপদী উপপাদ্যের গাণিতিক উদাহরণ
- (x+y)ⁿ এর বিস্তৃতি
- (x+y)ⁿ এর বিস্তৃতি
- n! এবং ⁿCᵣ এর মান নির্ণয়
- n! এবং ⁿCᵣ এর মান নির্ণয়
- গাণিতিক উদাহরণ
- গাণিতিক উদাহরণ
১২. সমতলীয় ভেক্টর
- ভেক্টর সংক্রান্ত প্রাথমিক ধারণা, ত্রিভুজ, সামান্তরিক বিধি
- ভেক্টর সংক্রান্ত প্রাথমিক ধারণা, ত্রিভুজ, সামান্তরিক বিধি
- ভেক্টর বিয়োগের ত্রিভুজ বিধি,শূন্য ভেক্টর
- ভেক্টর বিয়োগের ত্রিভুজ বিধি,শূন্য ভেক্টর
- ভেক্টর এর সকল বিধি এবং অবস্থান ভেক্টর
- ভেক্টর এর সকল বিধি এবং অবস্থান ভেক্টর
- গাণিতিক উদাহরণ - ১
- গাণিতিক উদাহরণ - ১
- গাণিতিক উদাহরণ - ২
- গাণিতিক উদাহরণ - ২