u - v এর ক্ষেত্রে কোনটি সঠিক?
i. v এর বিপরীত ভেক্টর -v
ii. এটি u ও -v এর যোগবিধি
iii. u এর বিপরীত ভেক্টর u
নিচের কোনটি সঠিক?
u যেকোনো একটি ভেক্টর যার দৈর্ঘ্য শূন্য। তাহলে u ভেক্টরের ক্ষেত্রে-
i. নির্দিষ্ট দিক আছে
ii. নির্দিষ্ট ধারক রেখা নেই
iii. আদিবিন্দু অন্তবিন্দু অভিন্ন
নিচের কোনটি সঠিক?
m + (-m) = কী?
m, n এবং m+n দ্বারা ত্রিভুজ উৎপন্ন করা সম্ভব যখন-
i. m এর আদিবিন্দু, n এর প্রান্ত বিন্দু যোগ করা যাবে
ii. m+n এর আদি বিন্দু ও অন্তবিন্দু যথাক্রমে n এর আদিবিন্দু এবং m এর প্রান্তবিন্দু হবে
iii. m ও n সমান্তরাল
নিচের কোনটি সঠিক?
দুটি ভেক্টর a ও b। a থেকে b এর বিয়োগফলের আদিবিন্দু হবে-
চিত্রের ত্রিভুজটিতে ভেক্টর CB = ?
নিচের চিত্রের সাপেক্ষে পরবর্তী দুইটি প্রশ্নের উত্তর দাও-
ত্রিভুজে ভেক্টর AC = কী হবে?
i. u + v
ii. v - u
iii. v + u
নিচের কোনটি সঠিক?
- AC - v = ?
- কোন ভেক্টরের নির্দিষ্ট ধারক রেখা নেই?
- দুটি ভেক্টর সমান্তরাল হলে সেক্ষেত্রে কোন বিধি প্রযোজ্য নয়?
i. ত্রিভুজবিধি
ii. যোগবিধি
iii. সামান্তরিকবিধি
নিচের কোনটি সঠিক?
১. সেট ও ফাংশন
২. বীজগাণিতিক রাশি
- চলক, ধ্রুবক, বহুপদী, এক চলকের বহুপদী
- চলক, ধ্রুবক, বহুপদী, এক চলকের বহুপদী
- ভাগশেষ উপপাদ্য, উৎপাদক উপপাদ্য
- ভাগশেষ উপপাদ্য, উৎপাদক উপপাদ্য
- উৎপাদক উপপাদ্য গাণিতিক উদাহরণ
- উৎপাদক উপপাদ্য গাণিতিক উদাহরণ
- চক্র-ক্রমিক রাশি,চক্র-ক্রমিক বহুপদীর উৎপাদকে বিশ্লেষণ
- চক্র-ক্রমিক রাশি,চক্র-ক্রমিক বহুপদীর উৎপাদকে বিশ্লেষণ
- মূলদ ভগ্নাংশের সরল
- মূলদ ভগ্নাংশের সরল
- আংশিক ভগ্নাংশ - ১
- আংশিক ভগ্নাংশ ১
- আংশিক ভগ্নাংশ - ২
- আংশিক ভগ্নাংশ ২
- আংশিক ভগ্নাংশ - ৩
- আংশিক ভগ্নাংশ ৩
৫. সমীকরণ
- (৫.১) - দ্বিঘাত সমীকরণের সমাধান
- (৫.১)- দ্বিঘাত সমীকরণের সমাধান
- (৫.২) - বর্গমূল যুক্ত সমীকরণের সমাধান
- (৫.২)- বর্গমূল যুক্ত সমীকরণের সমাধান
- (৫.৩) - সূচক সমীকরণের সমাধান
- (৫.৩)- সূচক সমীকরণের সমাধান
- (৫.৪) - দুই চলক বিশিষ্ট দ্বিঘাত সমীকরণ
- (৫.৪)- দুই চলক বিশিষ্ট দ্বিঘাত সমীকরণ
- (৫.৫) - দ্বিঘাত সমীকরণের ব্যবহার - ১
- (৫.৫)- দ্বিঘাত সমীকরণের ব্যবহার - ১
- (৫.৫) - দ্বিঘাত সমীকরণের ব্যবহার - ২
- (৫.৫)- দ্বিঘাত সমীকরণের ব্যবহার - ২
- (৫.৬) - দুই চলক বিশিষ্ট সূচক সমীকরণ
- (৫.৬)- দুই চলক বিশিষ্ট সূচক সমীকরণ
- (৫.৭) - লেখচিত্রের সাহায্যে দ্বিঘাত সমীকরণের সমাধান
- (৫.৭)- লেখচিত্রের সাহায্যে দ্বিঘাত সমীকরণের সমাধান
৬. অসমতা
৭. অসীম ধারা
৮. ত্রিকোণমিতি
- কোণ পরিমাপের পদ্ধতি এবং ধনাত্মক ও ঋণাত্মক কোণ
- কোণ পরিমাপের পদ্ধতি এবং ধনাত্মক ও ঋণাত্মক কোণ
- রেডিয়ান কোণ, প্রতিজ্ঞা- ১,২,৩,৪
- রেডিয়ান কোণ, প্রতিজ্ঞা- ১,২,৩,৪
- (৮.১) - গাণিতিক উদাহরণ
- (৮.১) - গাণিতিক উদাহরণ
- চতুর্ভাগ সম্পর্কিত অনুপাত ও গাণিতিক উদাহরণ
- চতুর্ভাগ সম্পর্কিত অনুপাত ও গাণিতিক উদাহরণ
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ২
- (৮.২) - গাণিতিক উদাহরণ - পর্ব ২
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ১
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ২
- (৮.৩) - গাণিতিক উদাহরণ - পর্ব ২
১০. দ্বিপদী বিস্তৃতি
- দ্বিপদী বিস্তৃতি, দ্বিপদী সহগ ও প্যাসকেলের ত্রিভুজের ব্যবহার
- দ্বিপদী বিস্তৃতি, দ্বিপদী সহগ ও প্যাসকেলের ত্রিভুজের ব্যবহার
- প্যাসকেলের ত্রিভুজ ও দ্বিপদী উপপাদ্যের গাণিতিক উদাহরণ
- প্যাসকেলের ত্রিভুজ ও দ্বিপদী উপপাদ্যের গাণিতিক উদাহরণ
- (x+y)ⁿ এর বিস্তৃতি
- (x+y)ⁿ এর বিস্তৃতি
- n! এবং ⁿCᵣ এর মান নির্ণয়
- n! এবং ⁿCᵣ এর মান নির্ণয়
- গাণিতিক উদাহরণ
- গাণিতিক উদাহরণ
১২. সমতলীয় ভেক্টর
- ভেক্টর সংক্রান্ত প্রাথমিক ধারণা, ত্রিভুজ, সামান্তরিক বিধি
- ভেক্টর সংক্রান্ত প্রাথমিক ধারণা, ত্রিভুজ, সামান্তরিক বিধি
- ভেক্টর বিয়োগের ত্রিভুজ বিধি,শূন্য ভেক্টর
- ভেক্টর বিয়োগের ত্রিভুজ বিধি,শূন্য ভেক্টর
- ভেক্টর এর সকল বিধি এবং অবস্থান ভেক্টর
- ভেক্টর এর সকল বিধি এবং অবস্থান ভেক্টর
- গাণিতিক উদাহরণ - ১
- গাণিতিক উদাহরণ - ১
- গাণিতিক উদাহরণ - ২
- গাণিতিক উদাহরণ - ২