ম্যাট্রিক্স অপারেশন (Matrix Operations)
ম্যাট্রিক্সের যোগ বিয়োগ (Addition & Subtraction of Matrix)
যদি A ও B দুটি সমান ক্রমের ম্যাট্রিক্স হয়, তবে এদের যোগফল A+B একটি ম্যাট্রিক্স হবে যার ভুক্তি হবে A এর প্রত্যেক অনুরূপ ভুক্তির সাথে B এর অনুরূপ ভুক্তির যোগফল।
একইভাবে A ও B এর বিয়োগফল একটি ম্যাট্রিক্স হবে যার ভুক্তি হবে A এর প্রত্যেক অনুরূপ ভুক্তি থেকে B এর অনুরূপ ভুক্তির বিয়োগফল। A+B এবং A-B এর ক্রম A ও B এর ক্রমের সমান হবে। দুইটি ম্যাট্রিক্সের ক্রম একই না হলে এদের যোগ বা বিয়োগ করা যায় না।
ম্যাট্রিক্সের স্কেলার গুণিতক (Scalar Multiples of Matrix)
যদি A একটি ম্যাট্রিক্স এবং k কোনো ধ্রুবক হয় তবে k ও A এর গুণন kA একটি ম্যাট্রিক্স হবে যার প্রত্যেক ভুক্তি হবে A এর অনুরূপ ভুক্তির সাথে K এর গুণফল।
ম্যাট্রিক্সের গুণন (Multiplication of Matrix)
দুইটি ম্যাট্রিক্স A ও B এর গুণফল AB নির্ণয়ের জন্য প্রথম ম্যাট্রিক্স A এর কলাম সংখ্যা ও দ্বিতীয় ম্যাট্রিক্স B এর সারি সংখ্যা সমান হতে হবে।
দুইটি ম্যাট্রিক্স A ও B এর গুণফল সংজ্ঞায়িত হলে AB ম্যাট্রিক্স নির্ণয় পদ্ধতি–
A এর প্রথম সারির ভুক্তিগুলো দ্বারা B এর প্রথম কলামের সকল অনুরূপ ভুক্তি গুণ করে গুণফল গুলি পর্যায়ক্রমে পাশাপাশি যোগ করতে হবে এবং এই যোগফল AB ম্যাট্রিক্সের প্রধান সারির প্রথম ভুক্তি হবে যাকে AB এর (1,1) তম ভুক্তি বলা হয়।
আবার A এর প্রথম সারির ভুক্তিগুলো দ্বারা B এর ২য় কলামের সকল অনুরূপ ভুক্তি গুণ করে গুণফলগুলো যোগ করতে হবে এবং এই যোগফল AB ম্যাট্রিক্সের ১ম সারির ২য় ভুক্তি হবে, যাকে AB এর (1,2) তম ভুক্তি বলা হয়।
দুইটি ম্যাট্রিক্স A ও B এর গুণফল AB সংজ্ঞায়িত হলে, AB ম্যাট্রিক্স নির্ণয়ের পদ্ধতি :
A এর প্রথম সারির ভুক্তিগুলি দ্বারা B এর প্রথম কলামের সকল অনুরুপ ভুক্তি গুণ করে গুণফলগুলি পর্যায়ক্রমে পাশাপাশি যোগ করে হবে এবং এই যোগফল AB ম্যাট্রিক্সের প্রথম সারির প্রথম ভূক্তি হবে, যাকে AB এর (1, 1)-তম ভুক্তি বলা হয়।
আবার, A এর প্রথম সারির ভুক্তিগুলি দ্বারা B এর দ্বিতীয় কলামের সকল অনুরূপ ভুক্তি গুণ করে গুণফলগুলি যোগ করতে হবে এবং এই যোগফল AB ম্যাট্রিক্সের প্রথম সারির দ্বিতীয় ভুক্তি হবে, যাকে AB এর (1, 2)-তম ভুক্তি বলা হয়।
অনুরূপে, A এর প্রথম সারির সাথে B এর অবশিষ্ট কলামগুলির প্রয়োগে প্রাপ্ত ফলাফলগুলি পর্যায়ক্রমে AB এর প্রথম সারির ভুক্তি হবে। পুনরায়, A এর দ্বিতীয় সারি দিয়ে B এর প্রত্যেক কলামকে একইভাবে গুণ করলে প্রাপ্ত ফলকে AB ম্যাট্রিক্সের দ্বিতীয় সারি বরাবর বসাতে হবে।
এভাবে অগ্রসর হয়ে A এর সকল সারি প্রয়োগ সমাপ্ত হলে, AB ম্যাট্রিক্স পাওয়া যাবে।
উদাহরণ: ধরি,
এবং
যেহেতু A এর ক্রম 3×3 এবং B এর ক্রম 3×3, সূতরাং AB নির্ণয় সম্ভব এবং AB এর ক্রম হবে 3×3
এখানে, AB এর (1,2) তম ভুক্তি নিম্নরূপে নির্ণয় করা যায়,
এখানে, 2(-1)+2.2+(-3)(-3)=11
সুতরাং, AB এর (1,2)-তম ভুক্তি হলো, A ম্যাট্রিক্সের ১ম সারি এবং B ম্যাট্রিক্সের ২য় কলামের অনুরূপ ভূক্তিগুলির গুণফলের যোগফল।
আবার, AB এর (2,3)-তম ভুক্তি নিম্নরূপে নির্ণয় করা যায়,

সুতরাং, AB এর (2,3)-তম ভুক্তি হলো A ম্যাট্রিক্সের ২য় সারি এবং B ম্যাট্রিক্সের ৩য় কলামের অনুরূপ ভূক্তিগুলির গুণফলের যোগফল।
ম্যাট্রিক্সের সূচক (Power of matrix):
n∈N মাত্রার বর্গ ম্যাট্রিক্স A হলে, যখন I একটি অভেদ ম্যাট্রিক্স। আবার, .
ম্যাট্রিক্সের বহুপদী (Polynomial of Matrix):
প্রত্যেকেই স্কেলার ধ্রুবক এর জন্য একটি বহুপদী হলে একটি বহুপদী ম্যাট্রিক্স।
উদাহরণ-4: এবং হলে f(A) নির্ণয় কর।
প্রমাণ:
The Reflection Matrix (প্রতিবিম্ব ম্যাট্রিক্স)
(i) x অক্ষের সাপেক্ষে প্রতিচ্ছবি (প্রতিবিম্ব):
x অক্ষের সাপেক্ষে P(x,y) বিন্দুর প্রতিচ্ছবি P'(x’,y’) হলে, এখানে, ম্যাট্রিক্সটি x অক্ষের সাপেক্ষে P(x,y) বিন্দুর প্রতিচ্ছবি বর্ণনা ও ব্যাখ্যা করে।
(ii) y অক্ষের সাপেক্ষে প্রতিচ্ছবি (প্রতিবিম্ব):
y অক্ষের সাপেক্ষে P(x,y) বিন্দুর প্রতিচ্ছবি P'(x’,y’) হলে, এখানে, ম্যাট্রিক্সটি মূলবিন্দুর সাপেক্ষে P(x,y) বিন্দুর প্রতিচ্ছবি বর্ণনা ও ব্যাখ্যা করে।
(iii) মূলবিন্দুর সাপেক্ষে প্রতিচ্ছবি (প্রতিবিম্ব):
মূলবিন্দুর সাপেক্ষে P(x,y) বিন্দুর প্রতিচ্ছবি P′(x′,y′) হলে, এখানে, ম্যাট্রিক্সটি মূলবিন্দুর সাপেক্ষে P(x,y) বিন্দুর প্রতিচ্ছবি বর্ণনা ও ব্যাখ্যা করে।
(iv) y=x রেখার সাপেক্ষে প্রতিচ্ছবি (প্রতিবিম্ব):
y=x রেখার সাপেক্ষে P(x,y) বিন্দুর প্রতিচ্ছবি P'(x’,y’) হলে, এখানে, ম্যাট্রিক্সটি y=x রেখার সাপেক্ষে Px,y বিন্দুর প্রতিচ্ছবি বর্ণনা ও ব্যাখ্যা করে।
(v) রেখার সাপেক্ষে প্রতিচ্ছবি (প্রতিবিম্ব):
রেখার সাপেক্ষে P(x,y) বিন্দুর প্রতিচ্ছবি P'(x’,y’) হলে, এখানে, ম্যাট্রিক্সটি রেখার সাপেক্ষে P(x,y) বিন্দুর প্রতিচ্ছবি বর্ণনা ও ব্যাখ্যা করে।
(vi) আদি অক্ষরেখা OX, OY-এর সাপেক্ষে P বিন্দুর স্থানাংক (x,y)। যদি অক্ষদ্বয়কে মূলবিন্দুর সাপেক্ষে ঘড়ির কাঁটার বিপরীত দিকে θ কোণে ঘুরানো হলে নতুন অক্ষদ্বয় OX’, OY’-এর সাপেক্ষে P বিন্দুর নতুন স্থানাংক (x’,y’) হয় তবে বিপরীতক্রমে । এখানে ম্যাট্রিক্সটি ঘড়ির কাঁটার বিপরীত দিকে θ কোণে আনত নতুন অক্ষের সাপেক্ষে P(x,y) বিন্দুর নতুন স্থানাংক এবং ম্যাট্রিক্সটি P(x,y) বিন্দুর নতুন স্থানাংক থেকে আদি স্থানাংকে যাওয়ার পদ্ধতি বর্ণনা ও ব্যাখ্যা করে।
এইচএসসি ও এডমিশন পরীক্ষার্থীদের জন্য আমাদের কোর্সসমূহঃ
- HSC 25 অনলাইন ব্যাচ ২.০ (বাংলা, ইংরেজি, তথ্য ও যোগাযোগ প্রযুক্তি)
- HSC 26 অনলাইন ব্যাচ (বাংলা, ইংরেজি, তথ্য ও যোগাযোগ প্রযুক্তি)
- HSC 25 অনলাইন ব্যাচ (ফিজিক্স, কেমিস্ট্রি, ম্যাথ, বায়োলজি)
- HSC 26 অনলাইন ব্যাচ (ফিজিক্স, কেমিস্ট্রি, ম্যাথ, বায়োলজি)
- মেডিকেল এডমিশন কোর্স – ২০২৪
- ঢাকা ভার্সিটি A Unit এডমিশন কোর্স – ২০২৪
- ঢাকা ভার্সিটি B Unit এডমিশন কোর্স – ২০২৪
- বুয়েট কোশ্চেন সলভ কোর্স
- গুচ্ছ A Unit এডমিশন কোর্স – ২০২৪
- গুচ্ছ B Unit এডমিশন কোর্স – ২০২৪
আমাদের স্কিল ডেভেলপমেন্ট কোর্সসমূহঃ
- বিদেশে উচ্চশিক্ষা: Study Abroad Complete Guideline
- Student Hacks
- IELTS Course by Munzereen Shahid
- Complete English Grammar Course
- Microsoft Office 3 in 1 Bundle
- ঘরে বসে Freelancing
- Facebook Marketing
- Adobe 4 in 1 Bundle
১০ মিনিট স্কুলের ক্লাসগুলো অনুসরণ করতে ভিজিট: www.10minuteschool.com