10 Minute School
Log in

তাপগতিবিদ্যার প্রথম সূত্রের ব্যবহার (Uses of First Law of Thermodynamics)

১. সমোষ্ণ প্রক্রিয়ার ক্ষেত্রে তাপগতিবিদ্যার প্রথম সূত্রের ব্যবহার (Uses of First Law of Thermodynamics in terms of Isothermal Process)

যে প্রক্রিয়ায় কোনো সিস্টেমের তাপমাত্রা স্থির থাকে কিন্তু চাপ ও আয়তন পরিবর্তিত হয় তাকে সমোষ্ণ প্রক্রিয়া বলে। এই প্রক্রিয়ায় সিস্টেমের অন্তস্থ শক্তির কোনো পরিবর্তন হয় না।

তাপগতিবিদ্যার প্রথম সূত্রকে গাণিতিকভাবে লেখা যায়,

dQ=du+dW————————– (1.1)

সমোষ্ণ প্রক্রিয়ায় তাপমাত্রা স্থির থাকে, ফলে অন্তর্নিহিত বা অন্তস্থ শক্তি অপরিবর্তিত থাকে।

সুতরাং du=0

অতএব, সমীকরণ 1.1কে লেখা যায়,

dQ=0+dW=dW ————————– (1.2)

অর্থাৎ, সমোষ্ণ প্রক্রিয়ায় সিস্টেম বা ব্যবস্থা কর্তৃক সম্পাদিত কাজ সিস্টেমে সরবরাহকৃত বা গৃহীত তাপশক্তির সমান। সমীকরণ 1.2 সমোষ্ণ প্রক্রিয়ায় তাপগতিবিদ্যার প্রথম সূত্রের গাণিতিক রূপ।

Uses of First Law of Thermodynamics
চিত্র ১.২

সমোষ্ণ প্রক্রিয়ার ক্ষেত্রে, n মোল গ্যাসের জন্য, PV=nRT 

বা, P=\frac{nRT}{V}

কোনো গ্যাসের আয়তন V_1 থেকে V_2-তে পরিবর্তনের জন্য কাজ,

W=\int_{V_1}^{V_2}PdV=\int_{V_1}^{V_2}\frac{nRTdV}{V}=nRT\int_{V_1}^{V_2}\frac{dV}{V}=nRT[lnV]_{V_1}^{V_2}=nRT \ln(\frac{V_2}{V_1})

যেহেতু সমোষ্ণ পরিবর্তনের ক্ষেত্রে অভ্যন্তরীণ শক্তির পরিবর্তন u=0, কাজেই dW=dQ

বা, W=Q=nRT \ln(\frac{V_2}{V_1}). এই কাজ নির্দেশক চিত্র ১.২-এ aABb ক্ষেত্রের ক্ষেত্রফলের সমান।

(২) রুদ্ধতাপীয় প্রক্রিয়ার ক্ষেত্রে তাপগতিবিদ্যার প্রথম সূত্রের ব্যবহার (Use of First Law of Thermodynamics in the case of Adiabatic Process)

যে প্রক্রিয়ায় কোনো সিস্টেমের তাপ ধ্রুব থাকে; কিন্তু চাপ ও আয়তন পরিবর্তিত হয় তাকে রুদ্ধতাপীয় প্রক্রিয়ায় বলে। রুদ্ধতাপীয় প্রক্রিয়ায় তাপের আদান-প্রদান হয় না। তাই কোনো গ্যাসের রুদ্ধতাপীয় প্রসারণের ক্ষেত্রে, dQ=0। সুতরাং,

dQ=0=du+dW

বা, du=-dW ————————– (1.3)

বা, dW=-du

রূদ্ধতাপীয় প্রসারণের সময় সিস্টেম কর্তৃক সম্পাদিত কাজ সিস্টেমের অভ্যন্তরীণ শক্তি দ্বারা সম্পাদিত হয় বলে সিস্টেমের অভ্যন্তরীণ শক্তি তথা তাপমাত্রা হ্রাস পায় অর্থাৎ সিস্টেম শীতল হয়। পক্ষান্তরে রূদ্ধতাপীয় সংকোচনে সিস্টেম উষ্ণ হয়। এক্ষেত্রে বাইরে থেকে শক্তি সরবরাহ করে কাজ সম্পন্ন করতে হয়।

কোনো গ্যাসের প্রাথমিক অন্তর্নিহিত শক্তি u_1 এবং চূড়ান্ত অন্তর্নিহিত শক্তি u_2 হলে, সমীকরণ 1.3 কে লেখা যায়,

du=u_2-u_1=-dW

\therefore u_2<u_1

অর্থাৎ রুদ্ধতাপীয় প্রসারণের সময় বাহ্যিক কাজ করার জন্য অন্তর্নিহিত শক্তি হ্রাস পায়, ফলে তাপমাত্রাও হ্রাস পায়।

অনুরূপভাবে, রুদ্ধতাপীয় সংকোচন বা সংরক্ষণের ক্ষেত্রেও dQ=0 হয়। সংকোচনের ক্ষেত্রে সিস্টেমের ওপর কাজ করা হয় বলে W ঋণাত্মক। সুতরাং সমীকরণ 1.3 হতে পাই,

du=-(-dW)=dW————————– (1.4)

বা, u_2-u_1=dW, এখানে, u_1u_2 যথাক্রমে সিস্টেমের প্রাথমিক ও চূড়ান্ত অন্তর্নিহিত শক্তি।

\therefore u_2>u_1

অর্থাৎ রুদ্ধতাপীয় সংকোচনের সময় গ্যাসের অভ্যন্তরীণ শক্তি বৃদ্ধি পায়, ফলে গ্যাসের তাপমাত্রা বৃদ্ধি পায়। সমীকরণ 1.3 ও 1.4 রুদ্ধতাপীয় প্রক্রিয়ায় তাপগতিবিদ্যার প্রথম সূত্রের গাণিতিক রূপ।

যেহেতু রুদ্ধতাপীয় প্রক্রিয়ায় সিস্টেমে তাপের কোনো আদান প্রদান হয় না, তাই dQ=0। অতএব তাপগতিবিদ্যার প্রথম সূত্র থেকে পাই,

0=du+dW

\therefore dW=-du

প্রারম্ভিক অবস্থায় যদি কোনো গ্যাসের চাপ, আয়তন ও তাপমাত্রা যথাক্রমে P_1,V_1T_1 এবং চূড়ান্ত অবস্থায় এদের মান P_2,V_2T_2 হয় তাহলে প্রারম্ভিক থেকে চূড়ান্ত অবস্থায় যেতে কৃত কাজ,

W=\int_{V_1}^{V_2}PdV
Uses of First Law of Thermodynamics

রুদ্ধতাপীয় পরিবর্তনের ক্ষেত্রে PV= ধ্রুবক

\therefore P=\frac{ধ্রুবক}{V}=KV

সুতরাং W=\int_{V_1}^{V_2}\frac{K}{V^{\gamma}}dV=K\Big[\frac{V^{-\gamma+1}}{-\gamma+1}\Big]_{V_1}^{V_2}

=K\Big[\frac{V^{1-\gamma}}{1-\gamma}\Big]_{V_1}^{V_2}=\frac{K}{1-\gamma}[V_2^{1-\gamma}-V_1^{1-\gamma}]=\frac{1}{1-\gamma}[KV_2^{1-\gamma}-KV_1^{1-\gamma}]

=\frac{1}{1-\gamma}[P_2V_2^{\gamma}V_2^{1-\gamma}- P_1V_1^{\gamma}V_1^{1-\gamma} ][\because P_1V_1^{\gamma}=P_2V_2^{\gamma}=K]

=\frac{1}{1-\gamma}[P_2V_2-P_1V_1]=\frac{1}{\gamma-1}[P_1V_1-P_2V_2]

=\frac{1}{1-\gamma}[RT_1-RT_2] [\because PV=RT]

W=\frac{R}{\gamma-1}[T_1-T_2]]

(৩) ধ্রুব আয়তন প্রক্রিয়ার ক্ষেত্রে তাপগতিবিদ্যার প্রথম সূত্রের ব্যবহার (Use of First Law of Thermodynamics in the process of constant volume)

যে প্রক্রিয়ায় কোনো সিস্টেমের আয়তন ধ্রুব থাকে তাকে ধ্রুব আয়তন প্রক্রিয়া বলে। এই প্রক্রিয়ায় তাপগতিবিদ্যার প্রথম সূত্র অনুযায়ী,dV=0; অতএব কাজের পরিমাণ,dW=PdV=0 অর্থাৎ সমআয়তন প্রক্রিয়ায় তাপগতির প্রথম সূত্রে অর্থাৎ dQ=du+PdV সমীকরণে PdV=0 বসিয়ে পাই, dQ=du। P-V লেখচিত্র ১.৪ সমআয়তন প্রক্রিয়া নির্দেশ করে। সমআয়তন প্রক্রিয়ায় কৃত কাজ শূন্য।

Uses of First Law of Thermodynamics
চিত্র ১.৪

অর্থাৎ এই প্রক্রিয়ায় অন্তস্থ শক্তির বৃদ্ধি সরবরাহকৃত তাপশক্তির সমান। অন্যভাবে বলা যায় সমআয়তন প্রক্রিয়ায় সিস্টেমে প্রদত্ত তাপ পুরোটাই অভ্যন্তরীণ শক্তি বৃদ্ধির কাজে ব্যবহৃত হয়।

(৪) সমচাপ প্রক্রিয়ার ক্ষেত্রে তাপগতিবিদ্যার প্রথম সূত্রের ব্যবহার (Use of First Law of Thermodynamics in the case of isobaric process)

যে প্রক্রিয়ায় কোনো সিস্টেমের চাপ ধ্রুব থাকে তাকে ধ্রুব চাপ প্রক্রিয়া বলে। সমচাপ বা স্থির চাপে গ্যাসের আয়তন V_1 থেকে V_2তে পরিবর্তিত হলে গ্যাস কর্তৃক মোট কৃত কাজ,

W=\int dW=\int_{V_1}^{V_2}PdV

=P\int_{V_1}^{V_2}=P[V_2-V_1]=P\Delta V

Uses of First Law of Thermodynamics
চিত্র ১.৫

অর্থাৎ কৃত কাজ = চাপ আয়তনের পরিবর্তন। সমচাপ প্রক্রিয়ায় P-V লেখচিত্র ১.৫। ইহা X-অক্ষের বা V এর সমান্তরাল একটি সরলরেখা।

জানার বিষয় (Things to know):

  1. সমচাপ প্রক্রিয়ায় কৃত কাজ চাপ এবং আয়তনের পরিবর্তনের সমান।
  2. সমআয়তন প্রক্রিয়ায় কৃত কাজ শূন্য।
  3. সমোষ্ণ প্রক্রিয়ায় কৃত কাজ সরবরাহকৃত তাপশক্তির সমান।
  4. রুদ্ধতাপীয় প্রক্রিয়ায় dW=-dU। অর্থাৎ কৃত কাজ অভ্যন্তরীণ শক্তি হ্রাস বা বৃদ্ধির সমান।