

Chemistry YEAR 2017

DHAKA 2017

মোলের ধারণা ও রাসায়নিক গণনা

40.5 g $Ca(HCO_3)_2$ প্রস্তুত করার লক্ষ্যে 25 g $CaCO_3$, 4.5 g H_2O এবং 8g CO_2 মিশ্রিত করা হয়, বিক্রিয়ায় প্রত্যাশিত উৎপাদ পাওয়া গেলো না।

[ঢা. বো. '১৭ || প্রশ্ন-৪]

- ক) O-H এর বন্ধন শক্তি কত কিলোজুল/মোল?
- খ) গ্যালভানাইজিং বলতে কী বোঝায়? ব্যাখ্যা করো।
- গ) বিক্রিয়ায় কত মোল CO_2 ব্যবহার করা হয়েছিল? নির্ণয় করে দেখাও।
- ঘ) বিক্রিয়ায় প্রত্যাশিত উৎপাদের পরিমাণ কম হওয়ার যৌক্তিকতা ব্যাখ্যা করো।

উত্তর

ক) O-H এর বন্ধন শক্তি কত কিলোজুল/মোল?

O-H এর বন্ধন শক্তি হলো 464 কিলোজুল/মোল।

খ) গ্যালভানাইজিং বলতে কী বোঝায়? ব্যাখ্যা করো।

তড়িং বিশ্লেষণের মাধ্যমে কোনো ধাতুর উপর জিংক ধাতুর প্রলেপ দেওয়াই হলো গ্যালভানাইজিং। সাধারণত অধিকাংশ ধাতু বায়ু ও পানির সাথে বিক্রিয়া করে। ফলে ধাতু ক্ষয়প্রাপ্ত হয় এবং আর্থিক ক্ষতি সাধিত হয়। আবার ধাতুসমূহের মজুদও সীমিত। তাই ধাতব সম্পদের ক্ষতি রোধ করার জন্য ধাতব পরমাণুকে বায়ু ও পানির সংস্পর্শে থেকে দূরে রাখতে হয়। তেমনি একটি প্রক্রিয়া হলো গ্যালভানাইজিং যেখানে বাহ্যিক প্রভাবক থেকে দূরে রাখা ও ধাতুর ক্ষয় রোধ করার জন্য জিংক ধাতুর প্রলেপ দেওয়া হয়।

গ) বিক্রিয়ায় কত মোল ${\it CO}_2$ ব্যবহার করা হয়েছিল? নির্ণয় করে দেখাও।

প্রদত্ত উদ্দীপকে $40.5~{
m g}~{\it Ca(HCO_3)}_2$ প্রস্তুতির লক্ষ্যে $25~{
m g}~{\it CaCO}_3$, $4.5~{
m g}~{\it H}_2{\it O}$ এবং $8~{
m g}~{\it CO}_2$ ন্যবহৃত হয়েছে।

 \therefore বিক্রিয়ায় ব্যবহৃত ${\it CO}_2$ এর মোল সংখ্যা $=rac{8}{44}\;mol=0.1818\;mol$

ঘ) বিক্রিয়ায় প্রত্যাশিত উৎপাদের পরিমাণ কম হওয়ার যৌক্তিকতা ব্যাখ্যা করো।

প্রদত্ত উদ্দীপকে 40.5 g $Ca(HCO_3)_2$ প্রস্তৃতির লক্ষ্যে 25 g $CaCO_3$, 4.5 g H_2O এবং 8 g CO_2 ব্যবহৃত হয়েছে।

এখন $Ca(HCO_3)_2$ প্রস্তুতির বিক্রিয়াটি হলো—

$$\begin{array}{ccc} CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2 \\ 100g & 18g & 44g & 162g \end{array}$$

উপরোক্ত বিক্রিয়া থেকে বলা যায়—

 $162 g Ca(HCO_3)_2$ প্রস্তুতির জন্য $CaCO_3$ প্রয়োজন = 100 g

$$\therefore 40.5~g~Ca(HCO_3)_2$$
 প্রস্তৃতির জন্য $CaCO_3$ প্রয়োজন $=\left(\frac{100\times40.5}{162}\right)~g$

আবার,

$$162~g~Ca(HCO_3)_2$$
 প্রস্তুতির জন্য H_2O প্রয়োজন $=18~g$ $\therefore 40.5~g~Ca(HCO_3)_2$ প্রস্তুতির জন্য H_2O প্রয়োজন $=\left(\frac{18\times40.5}{162}\right)~g$ $=4.5~g$

এবং,
$$162~g~Ca(HCO_3)_2$$
 প্রস্তুতির জন্য CO_2 প্রয়োজন $=44~g$ $\therefore 40.5~g~Ca(HCO_3)_2$ প্রস্তুতির জন্য CO_2 প্রয়োজন $=\left(\frac{44\times40.5}{162}\right)~g$ $=11~g$

উপরিউক্ত গণনা থেকে দেখা যাচ্ছে, $40.5~{
m G}~Ca(HCO_3)_2~$ প্রস্তুতির জন্য $CaCO_3~{
m G}~H_2O~$ প্রয়োজন যথাক্রমে $25~g~{
m G}~4.5~g~$ যা বিক্রিয়ায় উপস্থিত। অপরদিকে $CO_2~$ এর প্রয়োজন $11~{
m G}~$ যা বিক্রিয়ায় অনুপস্থিত। অর্থাৎ সংশ্লিষ্ট বিক্রিয়ায় $CO_2~$ লিমিটিং বিক্রিয়করূপে ক্রিয়া করে।

সুতরাং, কাজ্জ্বিত পরিমাণ উৎপাদ প্রস্তুতির জন্য যে পরিমাণ ${\it CO}_2$ প্রয়োজন তা উপস্থিত না থাকায় প্রত্যাশিত উৎপাদ পাওয়া সম্ভব নয়।

রাসায়নিক বিক্রিয়া

(i) $Mg(OH)_2 + 2HCl \rightarrow MgCl_2 + 2H_2O$ (ii) $CaO + CO_2 \rightarrow CaCO_3$ (iii) $Ca + F_2 \rightarrow CaF_2$

[ঢা.বো.'১৭ প্রশ্ন-৫]

- ক, জারণ সংখ্যা কাকে বলে?
- খ. গাঢ় নাইট্রিক এসিডকে বাদামী বর্ণের বোতলে রাখা হয় কেন? ব্যাখ্যা করো।
- গ. আমাদের দৈনন্দিন জীবনে (i) নং প্রকৃতির বিক্রিয়ার ভূমিকা ব্যাখ্যা করো।
- ঘ. সকল সংশ্লেষণ বিক্রিয়া সংযোজন বিক্রিয়া কিন্তু সকল সংযোজন বিক্রিয়া সংশ্লেষণ বিক্রিয়া নয়— (ii) ও (iii) নং এর আলোকে বিশ্লেষণ করো।

উত্তর

ক, জারণ সংখ্যা কাকে বলে?

ইলেকট্রন ত্যাগ বা গ্রহণের ফলে কোনো মৌলে সৃষ্ট ধনাত্মক বা ঋনাত্মক আধান সংখ্যাকে ঐ মৌলের জারণ সংখ্যা বলে।

খ. গাঢ় নাইট্রিক এসিডকে বাদামী বর্ণের বোতলে রাখা হয় কেন? ব্যাখ্যা করো।

গাঢ় নাইট্রিক এসিড (HNO_3) কে সর্বদা বাদামি বর্ণের বোতলে রাখা হয়। কারণ আলোর উপস্থিতিতে HNO_3 সহজেই ভেঙে গিয়ে বা বিযোজিত হয়ে নাইট্রোজেন ডাইঅক্সাইড (NO_2) তৈরি হয়। আলোর অনুপস্থিতিতে এ বিক্রিয়ার হার হ্রাস পায় বলে HNO_3 কে বাদামি বর্ণের বোতলে রাখা হয়।

গ. আমাদের দৈনন্দিন জীবনে (i) নং প্রকৃতির বিক্রিয়ার ভূমিকা ব্যাখ্যা করো।

উদ্দীপকে উল্লেখিত (i) নং বিক্রিয়াটি হলো—

$$Mg(OH)_2 + 2HCl o MgCl_2 + 2H_2O$$
ফার অম্ল লবণ পানি

বিক্রিয়ায় অস্ল ও ক্ষার পরস্পরের সাথে বিক্রিয়া করে নিরপেক্ষ লবণ ও পানি উৎপন্ন করে তাই বিক্রিয়াটি হলো প্রশমন বিক্রিয়া। নিম্নে প্রশমন বিক্রিয়ার ভূমিকা ব্যাখ্যা করা হলো—

পরিপাক: পরিপাকের প্রয়োজনে পাকস্থলিতে HCl এসিড উৎপন্ন হয়। প্রয়োজনের অতিরিক্ত এসিড প্রশমনের জন্য মৃদু ক্ষার ম্যাগনেসিয়াম হাইড্রোক্সাইড সেবন করা হয়, যা HCl এসিডকে প্রশমিত করে।

দাঁতের যত্নে : মানুষের মুখে বসবাসরত ব্যাকটেরিয়া মুখে লেগে থাকা খাবার খেয়ে এসিড উৎপন্ন করে যা দাঁতের এনামেলকে আক্রমণ ও ক্ষয় করে। ব্রাশ করার সময় টুথপেস্টের ক্ষার মুখের এই এসিডকে প্রশমিত করে দাঁতকে সুরক্ষা দেয়।

কৃষিক্ষেত্রে: অত্যাধিক এসিডিক মাটির pH মান কম হওয়ায় ভালো ফসল জন্মায় না। তাই ক্ষার জাতীয় পদার্থ চুন ব্যবহার করলে প্রশমন বিক্রিয়ায় মাটির pH ও উর্বরতা উভয়ই বৃদ্ধি পায়। আবার মাটি অত্যাধিক ক্ষারীয় হলে এতে এসিডধর্মী $(NH_4)_2SO_4$ যোগ করা হয় যা ক্ষারীয় মাটির সাথে প্রশমন বিক্রিয়া করে মাটির pH হ্রাস করে।

বর্ষাকালে: বর্ষাকালে পাকা বাড়ির ছাদ পিচ্ছিল হলে বালি দেওয়া হয়। কারণ পিচ্ছিলকারক পদার্থ ক্ষারধর্মী এবং বালু (SiO_2) অস্লধর্মী এদের মধ্যে প্রশমন বিক্রিয়া ঘটে। আবার চুন (CaO) স্ল্যাক লাইম $[Ca(OH)_2]$ দিয়ে মাটির এসিডিটি দূর করে উর্বরতা বৃদ্ধি করা হয় সেটিও হয় প্রশমন বিক্রিয়ার মাধ্যমে।

$$CaO + H_2SO_4 \rightarrow CaSO_4 + H_2O$$

ঘ. সকল সংশ্লেষণ বিক্রিয়া সংযোজন বিক্রিয়া কিন্তু সকল সংযোজন বিক্রিয়া সংশ্লেষণ বিক্রিয়া নয়— (ii) ও (iii) নং এর আলোকে বিশ্লেষণ করো।

সকল সংশ্লেষণ বিক্রিয়া সংযোজন বিক্রিয়া কিন্তু সকল সংযোজন বিক্রিয়া সংশ্লেষণ বিক্রিয়া নয়— (ii) ও (iii) নং বিক্রিয়ার আলোকে নিচে তা বিশ্লেষণ করা হলো—

দুই বা ততোধিক যৌগ বা মৌল যুক্ত হয়ে নতুন যৌগ উৎপন্ন হওয়ার প্রক্রিয়ার নাম সংযোজন বিক্রিয়া। যেমন উদ্দীপকের (ii) নং বিক্রিয়াতে চুন (CaO) ও CO_2 যুক্ত হয়ে চুনাপাথর $CaCO_3$ উৎপন্ন হয়েছে। আবার (iii) নং বিক্রিয়াতে ক্যালসিয়াম ধাতু (Ca) ফ্লোরিনের (F) সাথে যুক্ত হয়ে CaF_2 গঠন করেছে। বিক্রিয়া দুটি সংযোজন বিক্রিয়া।

পক্ষান্তরে সংযোজন বিক্রিয়ায় দুই বা ততোধিক মৌলিক পদার্থ যুক্ত হয়ে নতুন যৌগ উৎপন্ন হলে তাকে সংশ্লেষণ বিক্রিয়া বলে। যেমন (iii) নং বিক্রিয়াটি—

$$Ca + F_2 \rightarrow CaF_2$$

এটি একটি সংশ্লেষণ বিক্রিয়া। কারণ এতে Ca ও F (উভয়েই মৌল)যুক্ত হয়ে CaF_2 যৌগ হয়েছে। কিন্তু (ii) নং বিক্রিয়া সংশ্লেষণ বিক্রিয়া নয়।

কারণ CaO ও CO_2 উভয়েই যৌগ।

সুতরাং বলা যায়, সকল সংশ্লেষণ বিক্রিয়াই সংযোজন বিক্রিয়া কিন্তু সকল সংযোজন বিক্রিয়া সংশ্লেষণ বিক্রিয়া নয়।

RAJSHAHI 2017

রাসায়নিক বিক্রিয়া

অ্যালুমিনিয়ামের দহনের ফলে অ্যালুমিনিয়াম অক্সাইড উৎপন্ন হয়। [Al] এর পারমাণবিক ভর =27] $4Al(s)+3O_2(g) \rightarrow 2Al_2O_3(s)$

সমন্বিত অধ্যায় ৬ ও ৭ [রা,বো, '১৭ প্রশ্ন-৩

- ক. খাদ্য লবণের সংকেত লেখো।
- খ, নিয়ন নিজ্রিয় কেন? ব্যাখ্যা করো।
- গ. 20~g~Al থেকে কী পরিমাণ উৎপাদ তৈরি হবে? নির্ণয় করো।
- घ. विक्रियांिंटि जात्र निकात्र यूर्ग १९ घटि टेलक द्वेनीय थात्र वालात्क वाला करता।

উত্তর

ক. খাদ্য লবণের সংকেত লেখো। খাদ্য লবণের সংকেত হলো NaCl।

খ, নিয়ন নিষ্ক্রিয় কেন? ব্যাখ্যা করো।

নিয়নের পারমাণবিক সংখ্যা হলো 10। এর ইলেকট্রন বিন্যাস হলো—

 $_{10}Ne \rightarrow 1s^2 2s^2 2p^6$

ইলেকট্রন বিন্যাস হতে দেখা যায়, Ne এর শেষ কক্ষপথে ৪টি ইলেকট্রন রয়েছে। এটি Ne এর জন্য অত্যন্ত স্থিতিশীল ইলেকট্রন কাঠামোর জন্য Ne অন্য কোনো মৌলের সাথে ইলেকট্রন ত্যাগ, গ্রহণ বা শেয়ার করেনা।

অর্থাৎ রাসায়নিক বন্ধন তৈরি করে না। ফলে এটি কারও সাথে কোনো বিক্রিয়া না করে নিচ্চিয় অবস্থা প্রদর্শন করে। তাই নিয়ন নিচ্চিয় হয়।

গ. 20 g Al থেকে কী পরিমাণ উৎপাদ তৈরি হবে? নির্ণয় করো।

উদ্দীপকের Al এর দহন বিক্রিয়াটি হলো—

$$4Al + 3O_2 \rightarrow 2Al_2O_3$$

বিক্রিয়া হতে দেখা যায়, $4 \ mol \ Al$ হতে $2 \ mol \ Al_2O_3$ উৎপন্ন হয়।

$$4 \ mol \ Al = 4 \times 27 = 108 \ g$$

$$2 \text{ mol } Al_2O_3 = 2 \times (27 \times 2 + 16 \times 3) = 204 g$$

108~g~Al হতে উৎপাদ তৈরি হয় =~204~g

$$\therefore$$
 20 g Al হতে উৎপাদ তৈরি হয় $=\frac{204 \times 20}{108} g$
 $=37.78 g$

অতএব, 20~g~Al থেকে 37.78~g~ উৎপাদ তৈরি হবে।

ঘ, বিক্রিয়াটিতে জারণ-বিজারণ যু<mark>গপৎ</mark> ঘটে— ইলেকট্রনীয় ধারণার আলোকে ব্যাখ্যা করো।

উদ্দীপকে উল্লেখিত বিক্রিয়া অর্থাৎ অক্সিজেন দ্বারা অ্যালুমিনিয়ামের দহনের মাধ্যমে অ্যালুমিনিয়াম অক্সাইড গঠনের ক্ষেত্রে জারণ-বিজারণ যুগপৎ সংঘটিত হয়। নিচে ইলেকট্রনীয় ধারণার আলোকে বিষয়টি ব্যাখ্যা করা হলো—

জারণ-বিজারণের ইলেকট্রনীয় ধারণা মতে জারণ হচ্ছে এমন একটি রাসায়নিক প্রক্রিয়া যেখানে কোনো পরমাণু বা আয়ন ইলেকট্রন ত্যাগ করে। অন্যদিকে বিজারণ হচ্ছে এমন একটি প্রক্রিয়া যেখানে কোনো পরমাণু বা আয়ন ইলেকট্রন গ্রহণ করে।

আবার, যে পদার্থ ইলেকট্রন ত্যাগ করে তাকে বিজারক এবং যে পদার্থ ইলেকট্রন গ্রহণ করে তাকে জারক বলে। যেহেতু ইলেকট্রন ত্যাগ হলো জারণ এবং ইলেকট্রন গ্রহণ হলো বিজারণ, তাই জারণ ও বিজারণ ইলেকট্রন স্থানান্তরের মাধ্যমে একই সাথে ঘটে।

উদ্দীপকের বিক্রিয়াটি হলো নিম্নরূপ—

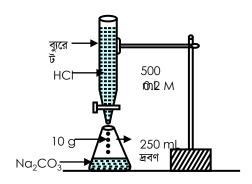
জারণ: $4Al \rightarrow 4Al^{3+} + 12e^{-}$

বিজারণ: $30_2 + 12e^- \rightarrow 60^{2-}$

জারণ-বিজারণ: $4Al + 3O_2 \rightarrow 2Al_2O_3$

উপরের বিক্রিয়ায় বিক্রিয়কে Al এর জারণ মান 0 এবং উৎপাদে জারণ মান $+3 \cdot Al$ তিনটি ইলেকট্রন ত্যাগ করায় এর জারণ মান 0 থেকে +3 হয়েছে। ইলেকট্রনীয় মতবাদ অনুসারে ইলেকট্রন ত্যাগ হলো জারণ বিক্রিয়া তাই Al এর জারণ সংঘটিত হয়েছে।

আবার, বিক্রিয়কে অক্সিজেন এর জারণ মান 0 এবং উৎপাদে – 2। অক্সিজেন দুটি ইলেকট্রন গ্রহণ করায় এর জারণ মান 0 থেকে —2 হয়েছে। যেহেতু ইলেকট্রন গ্রহণ হলো একটি বিজারণ বিক্রিয়া তাই অক্সিজেনের বিজারণ সংঘটিত হয়েছে। অর্থাৎ জারণ ছাড়া বিজারণ সম্ভব নয়।


সুতরাং বলা যায় উপরোক্ত বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎ সংঘটিত হয়েছে।

JESSORE 2017

মোলের ধারণা ও রাসায়নিক গণনা

[ব. বো. '১৯॥প্রশ্ন ৫]

- ক) তাপহারী বিক্রিয়া কাকে বলে?
- খ) $Mg + CuSO_4$ \longrightarrow $MgSO_4 + Cu$; বিক্রিয়াটিতে দর্শক আয়ন কোনটি ব্যাখ্যা করো।
- গ) বিকারের দ্রবণের ঘনমাত্রা <mark>নির্ণ</mark>য় করো।
- ঘ) ব্যুরেট থেকে সম্পূর্ণ দ্রবণ বিকারে যোগ করলে দ্রবণের প্রকৃতি অম্লীয়, না ক্ষারীয় হবে— গাণিতিকভাবে বিশ্লেষণ করো।

উত্তর

ক) তাপহারী বিক্রিয়া কাকে বলে?

যে বিক্রিয়ায় বিক্রিয়ক থেকে উৎপাদ তৈরি হওয়ার সময় পরিবেশ হতে তাপশক্তি শোষিত হয় তাকে তাপহারী বিক্রিয়া বলে।

খ) $Mg + CuSO_4$ \longrightarrow $MgSO_4 + Cu$; বিক্রিয়াটিতে দর্শক আয়ন কোনটি ব্যাখ্যা করো।

উদ্দীপকের বিক্রিয়াটি হলো নিম্নরূপ:

$$Mg + CuSO_4$$
 $MgSO_4 + Cu$
 $0 + 2 - 2$ $+ 2 - 2$ 0
বিজারণ

 $MgSO_4 + Cu$
 $MgSO_4 + Cu$

এখানে, জারণ-বিজারণ বিক্রিয়া সংঘটিত হয় Mg ও Cu^{2+} এর মধ্যে কিন্তু SO_4^{2-} আয়নের জারণসংখ্যা অপরিবর্তিত থাকে। তাই SO_4^{2-} আয়নটি দর্শক আয়ন।

রসায়ন – যশোর বোর্ড - ২০১৭

গ) বিকারের দ্রবণের ঘনমাত্রা নির্ণয় করো।

উদ্দীপকে উল্লেখিত বিকারে Na_2CO_3 এর দ্রবণ বিদ্যমান। প্রদত্ত বিকারে,

$$Na_2CO_3$$
 এর ভর, $W=10g$
$$Na_2CO_3$$
 এর আণবিক ভর, $M=(23\times 2)+(1\times 12)+(3\times 16)$
$$=46+12+48$$

$$=106g$$
 আয়তন, $V=250\ mL$

আমরা জানি,

$$S = \frac{1000 \times W}{M \times V}$$

$$S = \frac{1000 \times 10}{106 \times 250}$$

বা,
$$S = 0.38 M$$

সুতরাং, বিকারের দ্রবণের ঘনমাত্রা 0.38 M

ঘ) ব্যুরেট থেকে সম্পূর্ণ দ্রবণ বিকারে যোগ করলে দ্রবণের প্রকৃতি অম্লীয়, না ক্ষারীয় হবে— গাণিতিকভাবে বিশ্লেষণ করো।

ব্যুরেটে HCl এর আণবিক ভর, $M = (1 \times 1) + (1 \times 35.5)$

$$= 1 + 35.5 = 36.5$$

ব্যুরেট থেকে দ্রবণ বিকারে যোগ করলে নিম্নোক্ত বিক্রিয়া সংঘটিত হয়—

$$Na_2CO_3 + 2HCl \longrightarrow 2NaCl + CO_2 + H_2O$$

$$106g \ (2 \times 36.5)g$$

$$= 73g$$

রসায়ন – যশোর বোর্ড - ২০১৭

আমরা জানি,

$$S = \frac{SMV}{M \times V}$$

$$= \frac{SMV}{1000}$$

$$= \frac{0.2 \times 36.5 \times 500}{1000} g$$

$$= 3.65 g HCl$$

ব্যুরেটের এসিড HCl এর ক্ষেত্রে, আয়তন, V=500mL ঘনমাত্রা, S=0.2~M আণবিক ভর, $M=36.5~gmol^{-1}$ ভর, W=?

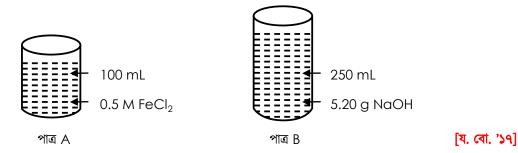
উদ্দীপকের বিকারে Na_2CO_3 এর পরিমাণ 10g । বিক্রিয়ামতে,

 $106g\ Na_2CO_3$ বিক্রিয়া করে $=73g\ HCl$ এর সাথে

$$10g\ Na_2CO_3$$
 বিক্রিয়া করে $= \frac{73 \times 10}{106}g\ HCl$ এর সাথে $= 6.887\ g\ HCl > 3.65\ g$

সম্পূর্ণ পরিমাণ $(10g)\ Na_2CO_3$ কে প্রশমিত করতে $6.887\ g\ HCl$ প্রয়োজন। কিন্তু ব্যুরেটে আছে মাত্র $3.65g\ HCl$

তাহলে প্রদত্ত 3.65g~HCl কতটুকু Na_2CO_3 কে প্রশমিত করবে তা নির্ণয় করি—


73g~HCl বিক্রিয়া করে $106g~Na_2CO_3$ এর সাথে

্রপ্রদত্ত
$$3.65g~HCl~$$
 বিক্রিয়া করে $= \frac{106 \times 3.65}{73} g~Na_2CO_3$ এর সাথে $= 5.3g~Na_2CO_3~$ এর সাথে

অতএব, ক্ষার Na_2CO_3 অবশিষ্ট থাকে =(10-5.3)g=4.7g। যেহেতু ক্ষার Na_2CO_3 অবশিষ্ট থাকে তাই মিশ্রিত দ্রবণের প্রকৃতি ক্ষারীয় হবে।

- ক) pH কী?
- খ) কঠিন অবস্থায় আয়নিক যৌগ বিদ্যুৎ পরিবহন করে না কেন?
- গ) উদ্দীপকের B পাত্রের ঘনমাত্রা নির্ণয় করো।
- ঘ) A এবং B পাত্রের যৌগদ্বয়কে মিশ্রিত করা হলে মিশ্রণে কোনটি লিমিটিং বিক্রিয়ক? গাণিতিকভাবে বের করো।

ক) pH কী?

কোনো দ্রবণে হাইড্রোজেন আয়নের ঘনমাত্রার ঋণাত্মক লগারিদমকে pH বলে। গাণিতিকভাবে $pH=-\log[H^+]$

খ) কঠিন অবস্থায় আয়নিক যৌগ বিদ্যুৎ পরিবহন করে না কেন?

কঠিন অবস্থায় আয়নিক যৌগসমূহ কেলাসাকারে থাকে। তাদের কেলাস ল্যাটিসসমূহ ধনাত্মক ও ঋণাত্মক আয়ন দ্বারা সুশৃঙ্খল জ্যামিতিক আকারে এমনভাবে সজ্জিত থাকে যেন একই ধরনের আধানবিশিষ্ট আয়নসমূহ পরস্পর থেকে যত দূরে সম্ভব এবং বিপরীত আধানবিশিষ্ট আয়নসমূহ যত নিকটে সম্ভব অবস্থান করতে পারে। বিদ্যুৎ পরিবহনের শর্ত হলো মুক্ত আয়নের চলাচল। কেলাস অবস্থায় আয়নের চলাচল করতে পারে না বলে কঠিন অবস্থায় আয়নিক যৌগসমূহ বিদ্যুৎ পরিবহন করে না।

গ) উদ্দীপকের B পাত্রের ঘনমাত্রা নির্ণয় করো।

উদ্দীপকের B–পাত্রে $250\ mL$ দ্রবণে $5.20\ g\ NaOH$ আছে।

$$NaOH$$
 এর আণবিক ভর = $(23 + 16 + 1)g \ mol^{-1}$ = $40g \ mol^{-1}$

আমরা জানি,

$$S = \frac{w \times 1000}{M \times V}$$
$$= \frac{5.2 \times 1000}{40 \times 250} M = 0.52 M$$

এখানে, NaOH এর আয়তন, $V=250\ mL$ দ্রবের ভর, $w=5.2\ g$ ঘনমাত্রা, S=?

NaOH এর আণবিক ভর, $M=40g\ mol^{-1}$

অতএব, উদ্দীপকের B পাত্রের ঘনমাত্রা 0.52 M।

ঘ) A এবং B পাত্রের যৌগদ্বয়কে মিশ্রিত করা হলে মিশ্রণে কোনটি লিমিটিং বিক্রিয়ক? গাণিতিকভাবে বের করো।

উদ্দীপকের A ও B পাত্রের যৌ<mark>গদ্বয়</mark>কে মিশ্রিত করা হলে সংঘটিত বিক্রিয়াটি হবে—

$$FeCl_2 + 2NaOH \longrightarrow Fe(OH)_2 + 2NaCl$$

1 mol 2 mol

A পাত্রে $FeCl_2$ এর ভর,

$$g = \frac{S \times V \times M}{1000}$$

$$=\frac{0.5\times100\times126.85}{1000}=6.34\ g$$

বিক্রিয়া হতে,

 $126.85~g~FeCl_2$ বিক্রিয়া করে =80~g~NaOH এর সাথে

$$\therefore 1g \ FeCl_2$$
 বিক্রিয়া করে $= \frac{80}{126.85} g \ NaOH$ এর সাথে

$$\therefore 6.34~g~FeCl_2$$
 বিক্রিয়া করে $= \frac{80 \times 6.34}{126.85}~NaOH$ এর সাথে

$$=4g\ NaOH$$
 এর সাথে

কিন্তু NaOH দ্রবণে এর পরিমাণ 5.2g l

অতএব এক্ষেত্রে NaOH অবশিষ্ট থাকলেও কোনো $FeCl_2$ অবশিষ্ট থাকবে না এজন্য এই বিক্রিয়ায় $FeCl_2$ লিমিটিং বিক্রিয়ক।

16 MINUTE SCHOOL

খনিজ সম্পদ: ধাতু-অধাতু

বস্তু	লোহা	<u>ক্রোমিয়াম</u>	নিকেল	কার্বন
X	99%	_	_	1%
Y	74%	18%	7%	1%

সমন্বিত অধ্যায় ৭ ও ১০ [য.বো.১৭ প্রশ্ন-৬]

- ক. বক্সাইটের সংকেত লেখো।
- খ. Zn কে অবস্থান্তর মৌল বলা হয় না কেন?
- গ. Х এর প্রধান মৌলের মিশ্র অক্সাইড এর জারণ সংখ্যা ও যোজনী ভিন্ন- ব্যাখ্যা করো।
- ঘ. X এবং Y এর মধ্যে কোনটি অধিক টেকসই বিশ্লেষণ করো।

উত্তর

ক. বক্সাইটের সংকেত লেখো।

বক্সাইটের সংকেত হলো Al_2O_3 . $2H_2O$ ।

খ. Zn কে অবস্থান্তর মৌল বলা হয় না কেন?

যে সকল d- ব্লক মৌলের সুস্থিত আয়নের ইলেকট্রন বিন্যাসে d- অরবিটাল আংশিকভাবে পূর্ণ থাকে তাদেরকে অবস্থান্তর মৌল বলা হয়। Zn এর সৃস্থিত আয়নের ইলেকট্রন বিন্যাস হলো:

$$Zn^{2+} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$$

ইলেকট্রন বিন্যাস হতে দেখা যায়, সুস্থিত আয়নে d — অরবিটাল পূর্ণ। অবস্থান্তর মৌল হতে হলে d — অরবিটাল আংশিক পূর্ণ থাকতে হবে। যেহেতু Zn এর সুস্থিত আয়নে d — অরবিটাল পূর্ণ থাকে, তাই বলা যায় Zn অবস্থান্তর মৌল নয়।

গ. Х এর প্রধান মৌলের মিশ্র অক্সাইড এর জারণ সংখ্যা ও যোজনী ভিন্ন- ব্যাখ্যা করো।

উদ্দীপকের X হলো একটি সংকর ধাতু যাতে 99% লোহা ও 1% কার্বন বিদ্যমান। সুতরাং এটি হলো স্টিল। স্টিল এর প্রধান মৌল হলো আয়রন (Fe)। Fe এর মিশ্র অক্সাইড হলো ফেরোসোফেরিক অক্সাইড, Fe_3O_4 । Fe_3O_4 মূলত FeO ও Fe_2O_3 এর মিশ্রণ। অর্থাৎ

$$Fe_3O_4 = FeO + Fe_2O_3$$

FeO যৌগে Fe এর জারণ মান +2 এবং Fe_2O_3 যৌগে Fe এর জারণ মান +3।

ধরি, Fe_2O_3 যৌগে Fe এর জারণ মান χ হলে-

$$\therefore x \times 3 + (-2) \times 4 = 0$$

$$\therefore x = +\frac{8}{3}$$

অতএব, Fe_2O_3 যৌগে Fe এর <mark>জার</mark>ণ মান $+rac{8}{3}$ ।

কিন্তু Fe এর যোজনী হলো 2 ও 3। সুতরাং Fe এর মিশ্র অক্সাইডে Fe এর জারণ মান ও যোজনী ভিন্ন।

ঘ, X এবং Y এর মধ্যে কোনটি অধিক টেকসই বিশ্লেষণ করো।

উদ্দীপকের X বস্তুটি হলো স্টিল। Y বস্তুতে 74% লোহা, 18% Cr, 7% Ni ও 1% C আছে। অতএব Y বস্তুটি হলো মরিচাবিহীন ইস্পাত বা স্টেইনলেস স্টিল।

পানি ও O_2 এর সংস্পর্শে আসলে স্টিলে মরিচা পড়ে এবং এটি হলো $[Fe_2O_3.nH_2O]$ অর্থাৎ স্টিল কিছুদিন রেখে দিলে এর উপর জং বা মরিচা ধরে। মরিচার কারণে স্টিলের কাঠামো পরিবর্তন হয়ে যায়। স্টিলে এ করোসন বা ধাতুর ক্ষয় রোধ করার জন্য কোনো উপাদান নেই। এটি বিভিন্ন মেশিন বা যন্ত্র তৈরিতে ব্যবহৃত হয় কিন্তু দীর্ঘমেয়াদি নয়।

আবার স্টেইনলেস স্টিলে 18% ক্রোমিয়াম ও 7% নিকেল আছে। এই Cr, Cr_2O_3 এর পাতলা একটি স্তর ধাতুর উপর তৈরি করে যখন এটি এর সংস্পর্শে আসে। এই পাতলা স্তর ধাতুকে ক্ষয় হতে দেয় না বা তার ওপর মরিচাও পড়ে না। আবার Ni এর উপস্থিতি ধাতুর টাফনেস বাড়ায় বা মজবুত করে তোলে। স্টেইনলেস স্টিলকে উচ্চ তাপমাত্রায় ব্যবহার করা যায়। এতে Cr ও Ni এর উপস্থিতি একে

সাধারণ স্টিল থেকে বেশি টেকসই করে তোলে।

সুতরাং সাধারণ স্টিল ও স্টেইনলেস স্টিলের মধ্যে স্টেইনলেস স্টিল অধিক টেকসই।

আমাদের জীবনে রসায়ন

আলভীর বাসায় রাতে মেহমান আসবে। তাই সে সারাদিন বাড়ি পরিষ্কার করল এক ধরনের পাউডার দিয়ে এবং গ্লাস পরিষ্কার করতে ব্যবহার করল গ্লাস ক্লিনার।

[য. বো. '১৭ || প্রশ্ন-৮]

- ক) বেকিং সোডার সংকেত লেখো ।
- খ) ডেসিমোলার দ্রবণের ব্যাখ্যা দাও।
- গ) উদ্দীপকে উল্লিখিত গ্লাস ক্লিনারের মূল উপাদান পরীক্ষাগারে উৎপাদনের মূলনীতি লেখো।
- ঘ) আলভীর বাসায় ব্যবহৃত পাউডারের দাগ উঠানোর কৌশল বিশ্লেষণ করো।

উত্তর

ক) বেকিং সোডার সংকেত লেখো। $m (বিকং পাউডারের সংকেত হলো NaHCO_3)$

খ) ডেসিমোলার দ্রবণের ব্যাখ্যা দাও।

নির্দিষ্ট তাপমাত্রায় 1L দ্রবণে উপস্থিত দ্রবের মোল সংখাকে ঐ দ্রবনের মোলারিটি বলে।

ডেসিমোলার দ্রবনের ঘনমাত্রা হলো 0.1M। অর্থাৎ এ দ্রবণের মোলারিটি হলো 0.1। সুতরাং ডেসিমোলার দ্রবন হলো 1L দ্রবণে কোনো দ্রবের 0.1mol এর উপস্থিতি।

গ) উদ্দীপকে উল্লিখিত গ্লাস ক্লিনারের মূল উপাদান পরীক্ষাগারে উৎপাদনের মূলনীতি লেখো।

উদ্দীপকে উল্লিখিত গ্লাস ক্রিনারের মূল উপাদান হলো NH_3 । এই NH_3 কে পরীক্ষাগারে উৎপন্ন করা যায়।

পরীক্ষাগারে NH_4Cl এর সাথে কুইক লাইম(CaO) অথবা স্ল্যাকেড লাইমকে বা কলিচুনকে $\{Ca(OH)_2\}$ উত্তপ্ত করে NH_3 প্রস্তুত করা হয়।

$$2NH_4Cl + CaO \rightarrow 2NH_3 + CaCl_2 + H_2O$$

$$2NH_4Cl + Ca(OH)_2 \rightarrow 2NH_3 + CaCl_2 + H_2O$$

এটাই হলো পরীক্ষাগারে NH_3 গ্যাস উৎপাদনের মূলনীতি।

ঘ) আলভীর বাসায় ব্যবহৃত পাউডারের দাগ উঠানোর কৌশল বিশ্লেষণ করো।

উদ্দীপকে আলভীর বাসায় মেহ<mark>মান আ</mark>সবে বলে সে বাড়ি পরিষ্কার করল। বাড়ি পরিষ্কার করা বলতে মূলত বাড়ীর বিভিন্ন কাপড়-চোপড় পরিষ্কার করা বুঝায়। কাপড়-চোপড় পরিষ্কার করতে সে যে পাউডার ব্যবহার করল তা হলো ব্লিচিং পাউডার Ca(OCl)Cl।

ব্লিচিং পাউডার পানির সাথে বিক্রিয়া করে HClO উৎপন্ন করে। HClO তাৎক্ষনিকভাবে বিয়োজিত হয়ে জায়মান অক্সিজেন উৎপন্ন হয়। এই জায়মান অক্সিজেনের জারণ ক্রিয়ায় কাপড়ের দাগ দূর হয়।

$$2Ca(OCl)Cl + H_2O \rightarrow CaCl_2 + 2HClO$$

 $HClO \rightarrow HCl + [O]$

ময়লাযুক্ত কাপড় $+[0] \rightarrow$ পরিষ্কার কাপড়

এভাবে Ca(OCl)Cl কাপড়ের দাগ দূর করে।

CHITTAGONG 2017

রাসায়নিক বিক্রিয়া

i. $N_2(g) + O_2(g) \rightleftharpoons 2NO(g); \Delta H = 180 kJ$ ii. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); \Delta H = -92 kJ$

সমন্বিত অধ্যায় ৬ ও ৭ [চ.বো.'১৭ প্রশ্ন-৭]

- ক, আকরিক কাকে বলে?
- খ. নিউক্লিয়ার বিক্রিয়া বলতে কী বুঝায়?
- গ. প্রমাণ অবস্থায় (ii) নং বিক্রিয়াটির উৎপাদ যৌগটির 1g এর আয়তন নির্ণয় করো।
- ঘ. সাম্যাবস্থায় (i) নং বিক্রিয়াটির উপর তাপ ও (ii) নং বিক্রিয়াটির উপর চাপের প্রভাব আলোচনা করো।

উত্তর

ক. আকরিক কাকে বলে?

যে সকল খনিজ হতে লাভজনকভাবে ধাতু নিষ্কাশন করা যায় তাদেরকে আকরিক বলে ।

খ. নিউক্লিয়ার বিক্রিয়া বলতে কী বুঝায়?

যে বিশেষ ধরনের বিক্রিয়ায় বড় নিউক্লিয়াস ভেঙে ছোট নিউক্লিয়াস তৈরি করে অথবা অসংখ্য ছোট ছোট নিউক্লিয়াস একত্রে যুক্ত হয়ে বড় নিউক্লিয়াস উৎপন্ন করে এবং বিক্রিয়াকালে প্রচুর শক্তি উৎপন্ন হয় তাকে নিউক্লিয়ার বিক্রিয়া বলে। যেমন—

$$^{235}U+^{1}_{0}n
ightarrow{^{90}Sr}+^{143}Xe+2^{1}_{0}n+2.0 imes10^{13}$$
 কিলোজুল শক্তি

$$^2_1H + ^1_1H
ightarrow ^3_2He + \gamma +$$
 বিপুল শক্তি

গ. প্রমাণ অবস্থায় (ii) নং বিক্রিয়াটির উৎপাদ যৌগটির 1g এর আয়তন নির্ণয় করো।

উদ্দীপকের (ii) নং বিক্রিয়াটি নিম্নরূপ—

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); \Delta H = -92 kJ$$

বিক্রিয়াটিতে উৎপাদ যৌগ হলো অ্যামোনিয়া গ্যাস (NH3)।

এখন, 1 মোল
$$NH_3 = 17g NH_3$$

আমরা জানি, প্রমাণ অবস্থায় সকল গাসের মোলার আয়তন সমান এবং তা হলো 22.4 L।

1 মোল বা $17g\ NH_3$ গ্যাসের আয়তন $=\ 22.4\ L$

$$\therefore 1g \ NH_3$$
 গ্যাসের আয়তন $= \frac{22.4 \times 1}{17} L$
= 1.318 L

সুতরাং, (ii) নং বিক্রিয়ার উৎপাদ NH_3 গ্যাসের 1g ভরের প্রমাণ অবস্থায় আয়তন হলো $1.318\,L$ ।

ঘ. সাম্যাবস্থায় (i) নং বিক্রিয়াটির উপর তাপ ও (ii) নং বিক্রিয়াটির উপর চাপের প্রভাব আলোচনা করো। উদ্দীপকের (i) নং বিক্রিয়াটি নিম্নরূপ—

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g); \Delta H = +180 kJ$$

বিক্রিয়াটির উপর তাপের প্রভাব আলোচনা করা হলো—

তাপের প্রভাব: উপরোক্ত উভমুখী বিক্রিয়াটির সম্মুখমুখী অংশটি তাপহারী এবং বিপরীতমুখী বিক্রিয়াটি তাপপাৎপাদী। এই বিক্রিয়ার সাম্যাবস্থায় তাপমাত্রা বৃদ্ধি করলে সাম্যাবস্থা ডান দিকে অগ্রসর হয়ে উৎপাদের পরিমাণ বৃদ্ধি করবে এবং তাপ বৃদ্ধি জনিত ফলাফল প্রশমিত করবে। একইভাবে তাপমাত্রা হ্রাস করলে সাম্যবস্থা বাম দিকে অগ্রসর হয়ে বিক্রিয়কের পরিমাণ বৃদ্ধি করে তাপ হ্রাসের ফলাফলও প্রশমিত করবে।

উদ্দীপকের (i) নং বিক্রিয়াটি নিম্নরূপ—

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g); \Delta H = +180 kJ$$

বিক্রিয়াটির উপর তাপের প্রভাব আলোচনা করা হলো—

তাপের প্রভাব: উপরোক্ত উভমুখী বিক্রিয়াটির সম্মুখমুখী অংশটি তাপহারী এবং বিপরীতমুখী বিক্রিয়াটি তাপপাৎপাদী। এই বিক্রিয়ার সাম্যাবস্থায় তাপমাত্রা বৃদ্ধি করলে সাম্যাবস্থা ডান দিকে অগ্রসর হয়ে উৎপাদের পরিমাণ বৃদ্ধি করবে এবং তাপ বৃদ্ধি জনিত ফলাফল প্রশমিত করবে। একইভাবে তাপমাত্রা হ্রাস করলে সাম্যবস্থা বাম দিকে অগ্রসর হয়ে বিক্রিয়কের পরিমাণ বৃদ্ধি করে তাপ হ্রাসের ফলাফলও প্রশমিত করবে। আবার (ii) নং বিক্রিয়াটি নিম্নরূপ—

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); \Delta H = -92 kJ$$

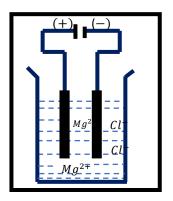
বিক্রিয়াটির উপর চাপের প্রভাব আলোচনা করা হলো—

চাপের প্রভাব: এটি একটি গ্যাসীয় বিক্রিয়া এবং বিক্রিয়াটিতে দেখা যাচ্ছে যে বিক্রিয়াটি সম্মুখমুখী হলে অণুর সংখ্যা হ্রাস পায়। ফলে একই আয়তনে চাপও হ্রাস পায়। এই অবস্থায় বিক্রিয়ায় চাপ বৃদ্ধি করলে সাম্যাবস্থা ডানদিকে অগ্রসর হয়ে উৎপাদ বৃদ্ধি করে চাপ বৃদ্ধির ফলাফল প্রশমিত করে। অপরদিকে চাপ হ্রাস করলে সাম্যাবস্থা বাম দিকে অগ্রসর হবে এবং বিক্রিয়কের পরিমাণও সাথে সাথে বৃদ্ধি পাবে। সুতরাং বলা যাচ্ছে যে প্রদত্ত (i) ও (ii) নং বিক্রিয়ার সাম্যাবস্থার উপর লা-শাতেলীয় নীতি অনুসারে তাপ ও চাপের যথেষ্ট প্রভাব বিস্তার করে উৎপাদন মাত্রা নিয়ন্ত্রণ করে।

আবার (ii) নং বিক্রিয়াটি নিম্নরূপ—

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); \Delta H = -92 kJ$$

বিক্রিয়াটির উপর চাপের প্রভাব আলোচনা করা হলো—


চাপের প্রভাব: এটি একটি গ্যাসীয় বিক্রিয়া এবং বিক্রিয়াটিতে দেখা যাচ্ছে যে বিক্রিয়াটি সম্মুখমুখী হলে অণুর সংখ্যা হ্রাস পায়। ফলে একই আয়তনে চাপও হ্রাস পায়। এই অবস্থায় বিক্রিয়ায় চাপ বৃদ্ধি করলে সাম্যাবস্থা ডানদিকে অগ্রসর হয়ে উৎপাদ বৃদ্ধি করে চাপ বৃদ্ধির ফলাফল প্রশমিত করে। অপরদিকে চাপ হ্রাস করলে সাম্যাবস্থা বাম দিকে অগ্রসর হবে এবং বিক্রিয়কের পরিমাণও সাথে সাথে বৃদ্ধি পাবে। সুতরাং বলা যাচ্ছে যে প্রদত্ত (i) ও (ii) নং বিক্রিয়ার সাম্যাবস্থার উপর লা-শাতেলীয় নীতি অনুসারে তাপ ও

চাপের যথেষ্ট প্রভাব বিস্তার করে উৎপাদন মাত্রা নিয়ন্ত্রণ করে।

রাসায়নিক বন্ধন

[চ. বো. '১৭ || প্রশ্ন-৬]

- ক) নিউক্লিয়ন সংখ্যা কাকে বলে ?
- খ) ধাতু পুনঃ প্রক্রিয়াজাতকরণ বলতে কী বোঝায় ?
- গ) উপরের উদ্দীপকের অ্যানোডে এবং ক্যাথোডে সংঘটিত কোষ বিক্রিয়া ব্যাখ্যা করো।
- ঘ) উদ্দীপকে প্রদর্শিত কোষ এবং গ্যালভানিক কোষের তুলনা করো।

উত্তর

ক) নিউক্লিয়ন সংখ্যা কাকে বলে ?

পরমাণুর নিউক্লিয়াসে অবস্থিত প্রোটন ও নিউট্রন সংখ্যার সমষ্টিকে নিউক্লিয়ন সংখ্যা বলে।

খ) ধাতু পুনপ্রক্রিয়াজাতকরণ বলতে কী বোঝায় ?

ধাতু পুনঃপ্রক্রিয়াজাতকরণ বলতে বুঝায় খনি থেকে ধাতু আহরনের পরিবর্তে অব্যবহৃত ধাতব সামগ্রীকে ব্যবহার উপযোগী ধাতুতে পরিণত করা। কারণ প্রতিটি খনিজ পদার্থই সসীম। বর্তমান হারে ধাতু ব্যবহার করতে থাকলে এ পর্যন্ত আবিষ্কৃত ধাতু আগামী 120-150 বছরে শেষ হয়ে যাবে। এক্ষেত্রে ধাতুর পুনঃপ্রক্রিয়াজাতকরণ পরিবেশগত সমস্যা সমাধানে অত্যন্ত গুরুত্বপূর্ণ। এতে অর্থ ও জ্বালানি উভয়ই সাশ্রয় হবে। যেমন: অ্যালুমিনিয়াম নিষ্কাশনে প্রয়োজনীয় জ্বালানির মাত্র 5% খরচ করে সমপরিমাণ অ্যালুমিনিয়াম ধাতু পুনঃপ্রক্রিয়াজাত করা যায়।

গ) উপরের উদ্দীপকের অ্যানোডে এবং ক্যাথোডে সংঘটিত কোষ বিক্রিয়া ব্যাখ্যা করো।

উদ্দীপকের চিত্রে $MgCl_2$ এর তড়িৎ বিশ্লেষণ দেখানো হয়েছে। নিম্নে কোষটির অ্যানোড ও ক্যাথোডে সংঘটিত কোষ বিক্রিয়া ব্যাখ্যা করা হলো—

কোষটিতে তড়িৎবিশ্লেষ্য হিসেবে $MgCl_2$ এর জলীয় দ্রবণ ব্যবহার করা হয়েছে। ফলে দ্রবণে Mg^{2+} ও Cl^- আয়ন উৎপন্ন করে। এখন তড়িৎপ্রবাহ চালনা করলে অ্যানোডে Cl^- আয়ন একটি ইলেকট্রন ত্যাগ করে Cl পরমাণুতে এবং পরবর্তীতে দুটি Cl পরমাণু যুক্ত হয়ে Cl_2 গ্যাস হয়ে উড়ে যাবে। অপরদিকে Mg^{2+} আয়ন ক্যাথোডে গিয়ে দুটি ইলেকট্রন গ্রহণ করে Mg ধাতু হিসেবে জমা হয়। অ্যানোড ও ক্যাথোড বিক্রিয়া নিম্নরূপ—

অ্যানোড অর্ধ বিক্রিয়া : $Cl^- - e^- \rightarrow Cl$

$$Cl + Cl \rightarrow Cl_2$$

ক্যাথোড অর্ধ বিক্রিয়া : $Mg^{2+}+2e^- o Mg$

ঘ) উদ্দীপকে প্রদর্শিত কোষ এ<mark>বং গ্যালভানিক কোষের তুলনা করো</mark>।

উদ্দীপকের কোষটি হলো তড়িৎ বিশ্লেষণ কোষ। অন্যদিকে গ্যালভানিক কোষ হলো তড়িৎ রাসায়নিক কোষ। নিচে এ দুটি কোষের মধ্যে তুলনা করা হলো :

তড়িৎবিশ্লেষ্য কোষ
i. যে তড়িৎ কোষে বাইরের উৎস হতে বিদ্যুৎ প্রবাহের ফলে রাসায়নিক বিক্রিয়া ঘটে তাকে তড়িৎবিশ্লেষ্য কোষ বলা হয়।
ii. তড়িৎবিশ্লেষ্য কোষ হলো তড়িৎশক্তি ব্যয়ী কোষ।
iii. তড়িৎবিশ্লেষ্য কোষের বাহ্যিক বর্তনীতে তড়িচ্চালক বলের উৎস যেমন ব্যাটারি যুক্ত থাকতে হয়।
i∨. তড়িৎবিশ্লেষ্য কোষের অ্যানোড ধনাত্মক ও ক্যাথোড ঋণাত্মক।
 একই পাত্রে একই তড়িৎবিশ্লেষ্যের মধ্যে তড়িৎদ্বার দুটি অবস্থিত।
vi. রেডক্স বিক্রিয়া বাহ্যিক উৎসের বিদ্যুৎ প্রবাহের উপর নির্ভরশীল।

রসায়ন – চট্টগ্রাম বোর্ড – ২০১৭

তড়িৎ রাসায়নিক কোষ	তড়িৎবিশ্লেষ্য কোষ
∨ii. জারণ অর্ধবিক্রিয়া (অ্যানোড):	∨ii. জারণ অর্ধবিক্রিয়া (অ্যানোড):
$A(s) \to A^{2+}(aq) + 2e^-$	$2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$
বিজারণ অর্ধবিক্রিয়া (ক্যাথোড):	বিজারণ অর্ধবিক্রিয়া (ক্যাথোড):
$B^{2+}(aq) + 2e^- \longrightarrow B(s)$	$2Na^+(aq) + 2e^- \rightarrow 2Na(s)$
কোষ বিক্রিয়া:	কোষ বিক্রিয়া:
$A(s) + B^{2+}(aq) \to A^{2+}(aq) + B(s)$	$2Cl^{-}(aq) + 2Na^{+}(aq) \rightarrow Cl_{2}(g) + 2Na(s)$
এক্ষেত্রে A হলো অধিক সক্রিয় বিজারক এবং B	
হলো অধিক সক্রিয় জারক।	

DINAJPUR 2017

পদার্থের গঠন

Question isn't included

ক. অষ্টক তত্ত্বটি লেখো।

মৌলগুলোকে তাদের পারমাণবিক ভর অনুযায়ী সাজালে প্রতি অষ্টম মৌলসমূহের ধর্মের মিল দেখা যায়, যা পর্যায় সারণির 'অষ্টকতত্ত্ব' নামে <mark>প</mark>রিচিত।

খ, ক্যালসিয়াম কে মৃৎক্ষার ধাতু বলা হয় কেন? ব্যাখ্যা করো।

যে সকল ধাতু মাটিতে যৌগ হিসেবে পাওয়া যায় এবং পানির সাথে বিক্রিয়া করে ক্ষার তৈরি করে তাদেরকে মৃৎক্ষার ধাতু বলা হয়। গ্রুপ-2 এর মৌলসমূহের এ ধরনের বৈশিষ্ট্য রয়েছে ।

ক্যালসিয়ামকে (Ca) কে মৃৎক্ষার ধাতু বলা হয় এর কারণ হলো এটি গ্রুপ-2 এর মৌল এবং এদের অক্সাইডসমূহ পানিতে ক্ষারীয় দ্রবণ তৈরী করে। এছাড়া মৌলটি বিভিন্ন যৌগ হিসেবে মাটিতে থাকে।

 $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$

গ. P মৌলের ইলেকট্রন বিন্যাসের মাধ্যমে পর্যায় সারণিতে এর অবস্থান নির্ণয় করো।

মৌলটির প্রোটনের সংখ্যা তথা পারমাণবিক সংখ্যা হলো 21। তাই বলা যায় মৌলটি হলো Sc (স্ক্যান্ডিয়াম)।

Sc(21) এর ইলেকট্রন বিন্যাস হলো $-1s^22s^22p^63s^23p^63d^1$ $4s^2$

Sc এর শেষ শক্তিন্তর হলো ৪র্থ শক্তিন্তর। অর্থাৎ এটি চতুর্থ পর্যায়ের মৌল।

Sc-এর ইলেকট্রন বিন্যাসে যেহেতু সর্বশেষ ইলেকট্রন d-অরবিটালে প্রবেশ করে, তাই এর গ্রুপ সংখ্যা হবে d অরবিটালে প্রবেশকৃত ইলেকট্রন ও সর্বশেষ 4s এ প্রবেশকৃত ইলেকট্রন সংখ্যার সমষ্টি। অর্থাৎ, এখানে d অরবিটালে 1টি এবং s অরবিটালে 2টি ইলেকট্রন থাকায়

Sc এর গ্রুপ = 1 + 2 = 3।

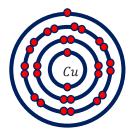
সুতরাং Sc মৌলটি চতুর্থ পর্যায়ের গ্রুপ-3 এর মৌল ।

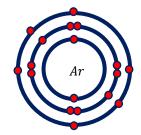
ঘ. Q এবং R উভয় মৌলের ইলেকট্রন বিন্যাস স্বাভাবিক নিয়ম মেনে চলে কি-না তা বিশ্লেষণ করো।

Q মৌলের ইলেকট্রন বিন্যাস স্বাভাবিক নিয়ম মেনে চলে না। R মৌলের ইলেকট্রন বিন্যাস স্বাভাবিক নিয়ম মেনে চলে। উদ্দীপকের Q ও R এর পারমাণবিক সংখ্যা 29 ও 18 যা যথাক্রমে কপার (Cu) ও আর্গনের (Ar) পারমাণবিক সংখ্যাকে নির্দেশ করে। R সাভাবিক নিয়মে R এর ইলেকট্রন বিন্যাস হওয়া উচিত R R এর R তিন্যাস হওয়া উচিত R এর R তিন্যাস হওয়া উচিত R R তিন্যাস হওয়া উচিত R তিন্যাস হওয়া তিন্যাস হওয়া উচিত তিন্যাস হওয়া তিন্যাস হেন্যাস হেন্যাস হেন্যাস হেন্যাস হেন্যাস হেন্যাস হেন্যাস হেন্যাস হিন্যাস হেন্যাস হ

কিন্তু গবেষণায় দেখা যায় যে, সমশক্তিসম্পন্ন অরবিটালসমূহ অর্ধপূর্ণ বা সম্পূর্ণভাবে পূর্ণ হলে ইলেকট্রন বিন্যাস সুস্থিতি অর্জন করে।

তাই, Cu(29) এর প্রকৃত ইলেকট্রন বিন্যাস— $1s^22s^22p^63s^23p^63d^{10}4s^1$


এর কারণ অর্ধপূর্ণ বা পূর্ণ d অরবিটাল বেশি স্থিতিশীল। যার ফলে Cu এর 4s অরবিটাল থেকে একটি ইলেকট্রন 3d অরবিটালে প্রবেশ করে অধিক সুস্থিত কাঠামো $3d^{10}4s^1$ লাভ করে। ফলে এখানে স্বাভাবিক নিয়মের ব্যতিক্রম দেখা যায় ।


অপরদিকে Ar(18) এর ইলেকট্রন বিন্যাস- $1s^22s^22p^63s^23p^6$

এখানে ইলেকট্রনসমূহ প্রথমে নিম্নশক্তির অরবিটালে প্রবেশ করে এবং ক্রমান্বয়ে উচ্চতর শক্তির অরবিটালে প্রবেশ করে। তাই Ar ইলেকট্রন বিন্যাস স্বাভাবিক নিয়ম মেনে চলে।

16 MINUTE SCHOOL

মোলের ধারণা ও রাসায়নিক গণনা

কার্বন, হাইড্রোজেন ও অক্সিজেন দ্বারা গঠিত একটি যৌগে C = 40%, H = 6.67% বিদ্যমান। যৌগটির আপেক্ষিক আণবিক ভর 60।

[দি. বো. '১৭∥প্রশ্ন-৮]

- ক) আইসোটোপ কাকে বলে?
- খ) গ্যালভানিক কোষে লবণ সেতু ব্যবহার করা হয় কেন?
- গ) যৌগটির স্থূল সংকেত নির্ণয় করো।
- ঘ) যৌগটি চিহ্নিত করে 2.5 লিটার $0.1\,M$ দ্রবণ প্রস্তুতি গাণিতিকভাবে ব্যাখ্যা করো।

উত্তর

ক) আইসোটোপ কাকে বলে?

একই পারমাণবিক সংখ্যা কিন্তু ভিন্ন ভর সংখ্যাবিশিষ্ট একই মৌলের বিভিন্ন পরমাণুসমূহকে পরস্পরের আইসোটোপ বলে।

খ) গ্যালভানিক কোমে লবণ সেতু ব্যবহার করা হয় কেন?

গ্যালভানিক রাসায়নিক কোষে লবণ সেতু ব্যবহার করার কারণ হলো—

- ightarrow লবণ সেতু অর্ধকোষদ্বয়ের উভয় দ্রবণের মধ্যে সংযোগ স্থাপন করে কোষের বর্তনী পূর্ণ করে।
- ightarrow লবণ সেতুর মধ্যস্থ তড়িৎ বিশ্লোষ্য যেমন: KCl, KNO_3 , উভয় অর্ধকোষের দ্রবণের সাথে কোন রাসায়নিক বিক্রিয়া করে না বরং উভয় তরলের মধ্যে প্রয়োজন মত ধনাত্মক ও ঋণাত্মক আয়ন বিনিময়ের ব্যাপন প্রক্রিয়ার মাধ্যম রূপে কাজ করে।
- → লবণ সেতু উভয় অর্ধকোষের দ্রবণের তড়িৎ-নিরপেক্ষতা বজায় রাখতে কাজ করে।
- → লবণ সেতুর অভাবে উভয় অর্ধকোষে জারণ-বিজারণ ক্রিয়া বাধাপ্রাপ্ত হয়ে অল্প সময়ের মধ্যে কোষ বিক্রিয়া তথা বিদ্যুৎ প্রবাহ বন্ধ হয়ে যায়।

রসায়ন – দিনাজপুর বোর্ড - ২০১৭

গ) যৌগটির স্থূল সংকেত নির্ণয় করো।

প্রদত্ত যৌগটি কার্বন, হাইড্রোজেন ও অক্সিজেন দ্বারা গঠিত। কার্বন ও হাইড্রোজেনের সংযুতি যথাক্রমে 40% ও 6.67% ।

সুতরাং অক্সিজেনের সংযুতি = $\{100 - (40 + 6.67)\}\%$ = 53.33%

স্থূল সংকেত নির্ণয়:

বিষয়	Н	С	0
মৌলের শতকরা সংযুতি	6.67	40	53.33
মৌলের শতকরা সংযুতি আপেক্ষিক পারমা <mark>ণবিক ভর</mark>	<u>6.67</u> 1	$\frac{40}{12}$	$\frac{53.33}{16}$
	= 6.67	= 3.33	= 3.33

সুতরাং যৌগে H, C ও O এর অনুপাত,

$$H: C: O = 6.67: 3.33: 3.33 = \frac{6.67}{3.33}: \frac{3.33}{3.33}: \frac{3.33}{3.33}$$

= 2 : 1 : 1

সরল অনুপাত পাওয়ার জন্য তাদের প্রত্যেককে ক্ষুদ্রতম সংখ্যা 3.33 দ্বারা ভাগ করে পাই।

∴ যৌগটির স্থুল সংকেত = <u>H2CO</u>

ঘ) যৌগটি চিহ্নিত করে 2.5 লিটার $0.1\,M$ দ্রবণ প্রস্তুতি গাণিতিকভাবে ব্যাখ্যা করো।

গ নং প্রশ্নোত্তর হতে পাওয়া যায়, যৌগটির স্থূল সংকেত H_2CO ।

ধরি,

যৌগটির আণবিক সংকেত $=(H_2CO)_n$

স্থূল সংকেতের আণবিক ভর = (2+12+16)=30

দেওয়া আছে,

যৌগটির আপেক্ষিক আণবিক ভর = 60

$$\therefore n = rac{$$
যৌগটির আপেক্ষিক আণবিক ভর $rac{60}{30} = 2$

$$\therefore$$
 যৌগটি = $(H_2CO)_n$

$$=(H_2CO)_2$$

$$= H_4 C_2 O_2$$

$$= CH_3COOH$$

অতএব, যৌগটি হলো ইথানয়িক এসিড।

আমরা জানি,

$$w = \frac{SMV}{1000}$$

$$= \frac{0.1 \times 60 \times 2500}{1000} g$$

$$= 15 g$$

এখানে,

দ্রবনের আয়তন, $V=2.5\,L=2500\,mL$

দ্রবনের ঘনমাত্রা, $S=0.1\,M$

 ${\it CH}_{3}{\it COOH}$ এর আণবিক ভর, ${\it M}=60~g~mol^{-1}$

CH₃COOH এর ভর, W =?

অতএব, 2.5 লিটার $0.1\ M\ CH_3COOH$ দ্রবণ প্রস্তৃতিতে $15g\ CH_3COOH$ প্রয়োজন।

রাসায়নিক বিক্রিয়া

(i) $AlCl_3(s) + 3H_2O(l) \rightarrow Al(OH)_3(s) + 3HCl(aq)$ (ii) $FeCl_2 + Cl_2 \rightarrow FeCl_3$

[দি. বো.'১৭ প্রশ্ন-২]

- ক, জারক কাকে বলে?
- খ, রাসায়নিক সাম্যাবস্থা একটি গতিশীল অবস্থা ব্যাখ্যা করো।
- গ. ইলেকট্রনীয় মতবাদের সাহায্যে দেখাও যে (ii) নং বিক্রিয়াটিতে জারণ-বিজারণ একই সাথে ঘটে।
- ঘ. (i) নং বিক্রিয়াটিকে অধঃক্ষেপণ ও পানি বিশ্লেষণ উভয় বিক্রিয়া বলা যাবে কি? যুক্তিসহ বিশ্লেষণ করো।

উত্তর

ক, জারক কাকে বলে?

জারণ-বিজারণ বিক্রিয়ায় যে বিক্রিয়ক ইলেকট্রন গ্রহণ করে তাকে জারক বলে।

খ, রাসায়নিক সাম্যাবস্থা একটি গতিশীল অবস্থা ব্যাখ্যা করো।


উভমুখী বিক্রিয়ার সম্মুখমুখী বিক্রিয়ায় হার ও পশ্চাৎমুখী বিক্রিয়ার হার সমান হলেই বিক্রিয়াটি সাম্যাবস্থায় উপনীত হয়। আপাতদৃষ্টিতে সাম্যাবস্থায় বিক্রিয়াটিকে স্থির মনে হলেও প্রকৃতপক্ষে বিক্রিয়াটি গতিশীল। এ অবস্থায় একক সময়ে যে পরিমাণ বিক্রিয়ক উৎপাদে পরিণত হয় ঐ একই সময়ে উৎপাদেরও একই পরিমাণ বিক্রিয়কে পরিবর্তিত হয়।

অর্থাৎ এ অবস্থায় প্রতি সেকেন্ডে যতগুলো বিক্রিয়ক অণু বিক্রিয়া করে উৎপাদ তৈরি করে ঐ একই সময়ে উৎপাদ বিক্রিয়া করে ঠিক ততগুলো বিক্রিয়ক অণু উৎপন্ন করে। তাই রাসায়নিক সাম্যাবস্থা একটি গতিশীল অবস্থা, স্থির অবস্থা নয়।

গ. ইলেকট্রনীয় মতবাদের সাহায্যে দেখাও যে (ii) নং বিক্রিয়াটিতে জারণ-বিজারণ একই সাথে ঘটে।

উপরের বিক্রিয়ায় বিক্রিয়কে <mark>আয়রন</mark> (Fe) এর জারণ সংখ্যা +2 এবং উৎপাদে জারণ সংখ্যা +3। Fe একটি ইলেকট্রন ত্যাগ করায় এর জারণ সংখ্যা +2 থেকে +3 হয়েছে। যেহেতু ইলেকট্রনীয় মতবাদ অনুসারে, ইলেকট্রন ত্যাগ হলো জারণ বিক্রিয়া। সুতরাং Fe এর জারণ সংঘটিত হয়েছে।

আবার, বিক্রিয়কে ক্লোরিন এর জারণ সংখ্যা শূন্য এবং উৎপাদে জারণ সংখ্যা -1। ক্লোরিন একটি ইলেকট্রন গ্রহণ করায় এর জারণ মান 0 থেকে -1 হয়েছে। যেহেতু ইলেকট্রন গ্রহণ একটি বিজারণ বিক্রিয়া তাই বলা যায় এখানে ক্লোরিনের বিজারণ ঘটেছে।

অর্থাৎ জারণ ছাড়া বিজারণ সম্ভব নয়। যেহেতু দেখা যাচ্ছে যে জারণে ত্যাগকৃত ইলেকট্রন বিজারণে গৃহীত হয়। তাই বুঝা যায় জারণ-বিজারণ এককভাবে সম্ভব নয়। সুতরাং বলা যায়, উপরোক্ত বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎ ঘটে।

ঘ. (i) নং বিক্রিয়াটিকে অধঃক্ষেপণ ও পানি বিশ্লেষণ উভয় বিক্রিয়া বলা যাবে কি? যুক্তিসহ বিশ্লেষণ করো।

উদ্দীপকের (i) নং বিক্রিয়াটি হলো:

$$AlCl_3(s) + 3H_2O(l) \rightarrow Al(OH)_3(s) + 3HCl(aq)$$

এ বিক্রিয়ায় $AlCl_3$, H_2O এর সাথে বিক্রিয়া করেছে। পানির অণু ধনাত্মক H^+ আয়ন ও ঋণাত্মক OH^- আয়ন বিশিষ্ট হয়। কোনো যৌগের দুই অংশ পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ উৎপন্ন হয়। এ বিক্রিয়াটিকে পানি বিশ্লেষণ বিক্রিয়া বলে।

উপরোক্ত বিক্রিয়ায় $AlCl_3$ এর Al^{3+} আয়ন পানির OH^- আয়নের সাথে ও Cl^- আয়ন পানির H^+ আয়নের সাথে যুক্ত হয়ে $Al(OH)_3$ ও HCl উৎপন্ন করে। যেহেতু $AlCl_3$ এর দুই অংশ Al^{3+} ও Cl^- পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয় অই এ বিক্রিয়াটি একটি আর্দ্রবিশ্লেষণ বিক্রিয়া।

আবার, যে বিক্রিয়ায় উৎপন্ন যৌগ <mark>অধ</mark>ঃক্ষেপ হিসাবে পাত্রের তলদেশে জমা হয় তাকে অধঃক্ষেপণ বিক্রিয়া বলা হয়।

(i) নং বিক্রিয়ায় উৎপন্ন $Al(OH)_3$ দ্রাবক পানিতে অদ্রবণীয়। তাই এটি পানিতে দ্রবীভূত না হয়ে অধঃক্ষেপ হিসাবে পাত্রের তলদেশে জমা হয়। তলদেশে এটি কঠিন $Al(OH)_3$ হিসাবে অবস্থান করে। সুতরাং বিক্রিয়াটি একটি অধঃক্ষেপণ বিক্রিয়াও বটে।

যেহেতু (i) নং বিক্রিয়া পানির বিপরীতধর্মী আয়নের সাথে যুক্ত হয়ে বিশ্লিষ্ট হয় এবং উৎপন্ন যৌগের একটি অর্থাৎ $Al(OH)_3$ অধঃক্ষেপরূপে পাওয়া যায় তাই বলা যায় যে, (i) নং বিক্রিয়া একই সাথে আর্দ্র বিশ্লেষণ ও অধঃক্ষেপণ বিক্রিয়া।

এসিড ক্ষার সমতা

(i) $N_2(g) + O_2(g) \rightarrow 2NO(g)$ N=N,0=0,N=0 বন্ধনশক্তির মান যথাক্রমে 520,498,419~kJ/mol (iii) $NH_4Cl(s) + Ca(OH)_2(aq) \rightarrow CaCl_2(aq) + H_2O(l) + X(g)$

সমন্বিত অধ্যায় ৮ ও ৯ [দি.বো.'১৭ প্রশ্ন-৫]

- ক, অ্যানালার কী?
- খ. হাইড্রোজেন ফুয়েল সেল বলতে কী বুঝায়?
- গ. X -গ্যাসটির জলীয় দ্রবণ দ্বারা Al^{3+} আয়ন কীভাবে শনাক্ত করবে? সমীকরণসহ লেখো।
- ঘ. (i) নং বিক্রিয়াটির ΔH এর মান নির্ণয় করে তা শক্তি চিত্রের মাধ্যমে দেখাও।

উত্তর

ক. অ্যানালার কী?

রাসায়নিক বিক্রিয়ার সময় সবচেয়ে বিশুদ্ধ (99%) বিক্রিয়ককে অ্যানালার (Analar বা Analytical grade Reagent) বলে।

খ. হাইড্রোজেন ফুয়েল সেল বলতে কী বুঝায়?

হাইড্রোজেন ফুয়েল সেল হলো এক ধরনের রাসায়নিক সেল যার সাহায্যে বিদ্যুৎ উৎপাদন করা হয়। এই কোষে অ্যানোডে হাইড্রোজেন অণু জারিত হয় আর ক্যাথোডে অক্সিজেন অণু বিজারিত হয়ে পানি উৎপন্ন করে।

ফলে কোষে ইলেকট্রন অ্যানোড হতে ক্যাথোডে প্রবাহিত হয় এবং আমরা বিদ্যুৎ পাই। এক্ষেত্রে হাইড্রোজেন জ্বালানী হিসেবে ব্যবহৃত হয়। উৎপন্ন বিদ্যুতের সাহায্যে মোটরযানও পর্যন্ত চলাচল করতে পারে।

অ্যানোড তড়িংদ্বার: $2H_2(g) + 4OH^-(aq) \rightarrow 2H_2O(I) + 4e^-$

ক্যাথোড তড়িৎদ্বার: $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$

 $2H_2(g) + O_2(g) \rightarrow \ 2H_2O(I)$

রসায়ন – দিনাজপুর বোর্ড - ২০১৭

গ. X -গ্যাসটির জলীয় দ্রবণ দ্বারা Al^{3+} আয়ন কীভাবে শনাক্ত করবে? সমীকরণসহ লেখো।

প্রদত্ত (ii) নং বিক্রিয়াটি সম্পন্ন করলে পাই—

 $NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + H_2O + NH_3$

সুতরাং X গ্যাসটি হলো NH_3 । এটি জলীয় দ্রবণে NH_4OH এ পরিণত হয়।

উৎপন্ন NH_4OH দ্বারা Al^{3+} আয়ন শনাক্তকরণ করা যায়। $AlCl_3$ এর দ্রবণে NH_4Cl দ্রবণ ও NH_4OH দ্রবণ যোগ করলে $Al(OH)_3$ এর সাদা চটচটে অধ্যক্ষেপ পড়ে।

এ অধঃক্ষেপকে NaOH দ্রবণসহ উত্তপ্ত করলে সোডিয়াম অ্যালুমিনেট $(NaAlO_2)$ রূপে এটি দ্রবীভূত হয়। উৎপন্ন দ্রবণে NH_4Cl দ্রবণ যোগ করে পুনরায় উত্তপ্ত করলে $Al(OH)_3$ এর সাদা অধঃক্ষেপ পড়ে। এই সাদা অধঃক্ষেপ Al^{3+} এর উপস্থিতি নিশ্চিত করে।

 $AlCl_3 + 3NH_4OH \rightarrow Al(OH)_3 \downarrow +3NH_4Cl$

(সাদা অধঃক্ষেপ)

 $Al(OH)_3 + NaOH \xrightarrow{\Delta} NaAlO_2 + H_2O$

 $NaAlO_2 + H_2O + NH_4Cl \xrightarrow{\Delta} Al(OH)_3 \downarrow + NaCl + NH_3$

(সাদা অধঃক্ষেপ)

এভাবেই NH_3 গ্যাসের জলীয় দ্রবণ দ্বারা Al^{3+} আয়ন শনাক্ত করা যায়।

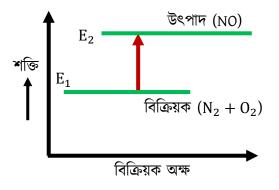
ঘ. (i) নং বিক্রিয়াটির ΔH এর মান নির্ণয় করে তা শক্তি চিত্রের মাধ্যমে দেখাও।

(i) নং বিক্রিয়াটি হলো—

$$N_2 + O_2 \rightarrow 2NO$$

বা,
$$N \equiv N + O = O \rightarrow 2(N = O)$$

বিক্রিয়ায় $1mol\ N\equiv N$ বন্ধন ও $1\ mol\ O=0$ বন্ধন ভাঙে এবং $2\ mol\ N\equiv 0$ বন্ধন গড়ে। $1\ mol\ N\equiv N$ ও $1\ mol\ O=0$ বন্ধন


 $2 \ mol \ N = 0 \$ বন্ধন গড়ায় নির্গত শক্তি $= (2 \times 419) \ kJ = 838 \ kJ$

∴ $\Delta H =$ বন্ধন ভাঙার প্রয়োজনীয় শক্তি-বন্ধন গড়ায় নির্গত শক্তি

$$= (1018 - 838) kJ$$
$$= 180 kJ$$

যেহেতু ΔH এর মান ধনাত্মক। সুতরাং বিক্রিয়াটি তাপহারী।

শক্তিচিত্র:

চিত্রঃ তাপহারী বিক্রিয়ার শক্তিচিত্র

বিক্রিয়ায় বিক্রিয়কের মোট শক্তি (E_1) উৎপাদের মোট শক্তি (E_2) অপেক্ষা কম। সুতরাং বিক্রিয়া সংঘটনের জন্য প্রয়োজনীয় শক্তি পরিবেশ থেকে শোষিত হয়।

উপরোক্ত আলোচনার প্রেক্ষিতে বলা যায় যেহেতু ΔH এর মান ধনাত্মক এবং প্রদন্ত চিত্রানুসারে তাপ শোষিত হয় তাই বিক্রিয়াটি একটি তাপহারী বিক্রিয়া।

16 MINUTE SCHOOL

খনিজ সম্পদ: ধাতু-অধাতু

(i) বক্সাইট (ii) চালকোসাইট (iii) ক্যালামাইন

সমন্বিত অধ্যায় ৬ ও ১০ [দি.বো.১৭ প্রশ্ন-৪]

- ক. অরবিট কাকে বলে?
- খ. (iii) নং আকরিককে অক্সাইডে রপান্তর প্রক্রিয়াটি লেখো।
- গ. (i) নং আকরিকে অক্সিজেনের শতকরা সংযুতি নির্ণয় করো।
- ঘ. (ii) নং আকরিক হতে নিষ্কাশিত ধাতুটির বিশুদ্ধকরণ পদ্ধতি চিত্রসহ বর্ণনা করো।

উত্তর

ক, অরবিট কাকে বলে?

পরমাণুর নিউক্লিয়াসের চারদিকে ইলেকট্রনসমূহ আবর্তনের জন্য বৃত্তাকার স্থির কক্ষপথকে অরবিট বলা হয়।

খ. (iii) নং আকরিককে অক্সাইডে রপান্তর প্রক্রিয়াটি লেখো।

উদ্দীপকের (iii) নং আকরিকটি হলো ক্যালামাইন। এর সংকেত হলো $ZnCO_3$ । এই আকরিককে ভস্মীকরণ প্রক্রিয়ায় গলনাঙ্কের চেয়ে কম তাপমাত্রায় বায়ুতে উত্তপ্ত করা হয়। এর ফলে আকরিক থেকে জৈব উপাদান ও জলীয় বাষ্পা দূরীভূত হয়। এ প্রক্রিয়ায় আকরিক ধাতুর কার্বনেট ও ধাতব অক্সাইডে রূপান্তরিত হয়।

$$\begin{array}{c} \Delta \\ ZnCO_3 \rightarrow ZnO + CO_2 \end{array}$$

এভাবেই ক্যালামাইনকে ধাতব অক্সাইডে বা ZnO এ রূপান্তরিত করা হয়।

গ. আকরিক থেকে উদ্দীপকের (i) নং মৌলটির নিষ্কাশন প্রক্রিয়া সমীরণসহ বর্ণনা করো।

উদ্দীপকের (i) নং আকরিক হলো বক্সাইট। এর সংকেত হলো:

$$Al_2O_3$$
. $2H_2O$

বক্সাইট এর আণবিক ভর =
$$27 \times 2 + 16 \times 3 + 4 + 32 = 138 \ g/mol$$

বক্সাইট যৌগে অক্সিজেনের আপেক্ষিক ভর $= 16 \times 3 + 32 = 80$

 \therefore অক্সিজেনের সংযুতি $\frac{80}{138} \times 100\% = 57.97\%$

সুতরাং, প্রদত্ত বক্সাইট আকরিকে অক্সিজেনের সংযুতি 57.97%।

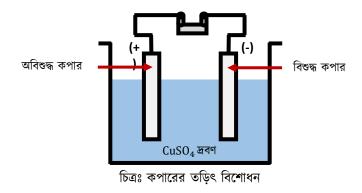
ঘ. (ii) নং আকরিক হতে নিষ্কাশিত ধাতুটির বিশুদ্ধকরণ পদ্ধতি চিত্রসহ বর্ণনা করো।

উদ্দীপকের (ii) নং আকরিক হলো চালকোসাইট। এর সংকেত হলো Cu_2S । কপার ধাতু নিষ্কাশনের তাপজারণ ও স্ববিজারণ প্রক্রিয়ার বিক্রিয়াসমূহ নিম্নরূপ:

$$Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$$

 $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$

নিষ্কাশিত Cu ধাতুকে তড়িৎ বিশোধন পদ্ধতিতে বিশুদ্ধ করা হয়।


তড়িৎ বিশ্লেষণে বিদ্যুৎ শক্তি ব্যবহার করে রাসায়নিক বিক্রিয়া সম্পন্ন করা হয়। এতে অবিশুদ্ধ কপারের মোটা পাত তৈরি করে বিদ্যুৎ উৎসের ধনাত্মক প্রান্তের সাথে এবং বিশুদ্ধ কপারের একটি পাতলা পাত ঋণাত্মক প্রান্তের সাথে যুক্ত করা হয়।

 $CuSO_4$ দ্রবণ ও H_2SO_4 এর মিশ্রণে পূর্ণ একটি ট্যাংকের মধ্যে দুটি পাতকেই ডোবানো হয়। এই দ্রবণের ভেতর দিয়ে বিদ্যুৎ প্রবাহ চালনা করলে অবিশুদ্ধ কপার দ্রবীভূত হয় এবং বিজারণ বিক্রিয়ায় বিশুদ্ধ কপার পাতলা পাতে জমা হয়।

ঘ. (ii) নং আকরিক হতে নিষ্কাশিত ধাতুটির বিশুদ্ধকরণ পদ্ধতি চিত্রসহ বর্ণনা করো।

আনেড: $Cu \rightarrow Cu^{2+} + 2e^{-}$

ক্যাথোড: $Cu^{2+} + 2e^{-} \rightarrow Cu$

অবিশুদ্ধ কপারের অপদ্রব্যগুল<mark>ো ট্যাং</mark>কের তলায় গাদ হিসাবে জমা হয়। এভাবে উৎপন্ন *Cu* ধাতু 99.9% বিশুদ্ধ হয়।

উপরোক্ত প্রক্রিয়া পর্যালোচনা করলে পাওয়া যায়, কপারের আকরিক হতে প্রাপ্ত কপার থেকে অপদ্রব্য তড়িৎবিশ্লেষ্য কোষের ক্রিয়াকে কাজে লাগিয়ে দূর করা হয় এবং এই পদ্ধতি সবচেয়ে গ্রহণযোগ্য। তাই এভাবেই কপারকে বিশুদ্ধ করা হয়।

SYLHET 2017

রাসায়নিক বন্ধন

[সি. বো. '১৭ || প্রশ্ন-৭]

- ক) অষ্টক নিয়মটি লিখ।
- খ) অসম্পৃক্ত হাইড্রোকার্বন বলতে কী বোঝায়?
- গ) P-বিক্রিয়ায় শক্তি উৎপাদন কৌশল ব্যাখ্যা কর।
- ঘ) Q-বিক্রিয়াটি চার প্রকার বিক্রিয়ার প্রতিনিধিত্ব করে— উক্তিটি বিশ্লেষণ কর।

উত্তর

ক) অষ্টক নিয়মটি লিখ।

বিভিন্ন মৌলের পরমাণুসমূহ নিজেদের মধ্যে ইলেকট্রন আদান— প্রদান বা শেয়ারের মাধ্যমে পরমাণুসমূহের শেষ শক্তিস্তরে ৮টি করে ইলেকট্রন বিন্যাস লাভ করে, একে অষ্টক বলে।

খ) অসম্পুক্ত হাইড্রোকার্বন বলতে কী বোঝায়?

জৈব যৌগের যে সকল হাইড্রোকার্বনসমূহে কার্বন-কার্বন দ্বিবন্ধন বা ত্রিবন্ধন বিদ্যমান তাদেরকে অসম্পৃক্ত হাইড্রোকার্বন বলে। এক্ষেত্রে দ্বিবন্ধন বিশিষ্ট অসম্পৃক্ত হাইড্রোকার্বনকে অ্যালকিন এবং ত্রিবন্ধনযুক্ত হাইড্রোকার্বনসমূহকে অ্যালকাইন বলে।

যেমন— ইথিন ($CH_2=CH_2$) এবং ইথাইন ($CH\equiv CH$)।

গ) P-বিক্রিয়ায় শক্তি উৎপাদন কৌশল ব্যাখ্যা কর।

প্রদত্ত P-বিক্রিয়াটি হলো নিউক্লিয়ার ফিসন এবং চেইন বিক্রিয়া। এই বিক্রিয়াটি তাপ উৎপাদী এবং এই বিক্রিয়ার ফলে প্রচুর তাপশক্তি উৎপন্ন হয়। এই প্রক্রিয়ায় ইউরেনিয়াম-235 কে উচ্চ গতিসম্পন্ন নিউট্রন দ্বারা আঘাত করলে ফিসন বিক্রিয়ার ফলে প্রথমে স্ট্রোনসিয়াম-90 (^{90}Sr) ও জেনন-143 (^{143}Xe) তৈরি হয় ও দুটি উচ্চ গতিসম্পন্ন নিউট্রন নির্গত হয়। উৎপন্ন নিউট্রন দুটি নতুন করে ইউরেনিয়াম, Sr ও Xe কে আঘাত করে অনুরূপভাবে নিউট্রন তৈরি করে। এভাবে শিকলের মতো চলতে থাকে যতক্ষণ না পর্যন্ত বিক্রিয়ার মাধ্যমে ভেঙে ছোট পরমাণু হওয়ার মত পরমাণু অবশিষ্ট থাকে। আর প্রতি ক্ষেত্রে প্রচুর তাপশক্তি উৎপন্ন হয়। উৎপন্ন তাপশক্তি দ্বারা টারবাইন ঘুরিয়ে বিদ্যুৎ উৎপন্ন করা হয়। এভাবে উৎপন্ন শক্তি তাপ ও বিদ্যুৎ শক্তিতে পরিণত হয়।

ঘ) Q-বিক্রিয়াটি চার প্রকার বিক্রিয়ার প্রতিনিধিত্ব করে— উক্তিটি বিশ্লেষণ কর।

উদ্দীপকের Q-চিত্রের বিক্রিয়াটি সংযোজন, সংশ্লেষণ, দহন ও জারণ-বিজারণ এই চার প্রকার বিক্রিয়ার প্রতিনিধিত্ব করে উক্তিটি বিশ্লেষণ <mark>করা</mark> হলো—

সংযোজন বিক্রিয়া : যে রাসায়নিক বিক্রিয়ায় কোনো যৌগ তার সরলতম উপাদানসমূহের প্রত্যক্ষ সংযোগে সৃষ্টি হয় তাকে সংযোজন বিক্রিয়া বলে। যেমন— উদ্দীপকের Mg ও O পরস্পরের সাথে বিক্রিয়া করে MgO উৎপন্ন করে। সুতরাং এটি একটি সংযোজন বিক্রিয়া।

$$Mg + O_2 \longrightarrow MgO$$

সংশ্লেষণ বিক্রিয়া: যে বিক্রিয়ায় কোনো যৌগ তার উপাদান মৌলসমূহের প্রত্যক্ষ সংযোগে উৎপন্ন হয় তাকে সংশ্লেষণ বিক্রিয়া বলা হয়। যেমন- উদ্দীপকের Q চিত্রের বিক্রিয়ায় Mg ও O সংযোগে MgO উৎপন্ন হয়। কাজেই এটি একটি সংশ্লেষণ বিক্রিয়া।

$$Mg + O_2 \rightarrow MgO$$

দহন বিক্রিয়া: কোনো মৌলকে বা যৌগকে বায়ুর অক্সিজেনের উপস্থিতিতে পুড়িয়ে তার উপাদান মৌলের অক্সাইডে পরিণত করাকে দহন বিক্রিয়া বলে। যেমন— উদ্দীপকের Q চিত্রের বিক্রিয়ায় Mg মৌলকে বায়ুর অক্সিজেনের উপস্থিতিতে পুড়িয়ে তার উপাদান অক্সাইড MgO পরিণত করে। সুতরাং বিক্রিয়াটি একটি দহন বিক্রিয়া।

$$Mg + O_2 \longrightarrow MgO$$

জারণ-বিজারণ বিক্রিয়া: জারণ-বিজারণের ইলেকট্রনীয় ধারণা মতে, যে বিক্রিয়ায় একইসাথে ইলেকট্রনের আদান-প্রদান ঘটে তাকে জারণ- বিজারণ বিক্রিয়া বলে।

উদ্দীপকের Q চিত্রের বিক্রিয়ায় Mg দুটি ইলেকট্রন ত্যাগ করে Mg^{2+} ও অক্সিজেন দুটি ইলেকট্রন গ্রহণ করে O^{2-} আয়নে পরিণত হয় এবং MgO উৎপন্ন করে। সুতরাং এটি একটি জারণ-বিজারণ বিক্রিয়া।

$$Mg - 2e^- \rightarrow Mg^{2+}$$
 [জারণ] $2O + 2e^- \rightarrow O^{2-}$ [বিজারণ]

$$Mg + O_2 \rightarrow MgO$$
 [জারন-বিজারণ]

অতএব উপরের আলোচনা থেকে বলা যায়, উদ্দীপকের বিক্রিয়াটি চার প্রকার বিক্রিয়ার প্রতিনিধিত্ব করে।


16 MINUTE SCHOOL

BARISAL 2017

পর্যায় সারণি

- ক) আইসোটোপ কী?
- খ) কপারের ইলেকট্রন বিন্যাস সাধারণ নিয়ম মানে না কেন?
- গ) পর্যায়ের কথা বিবেচনা করে <mark>১ম</mark> বৃত্তের মৌলগুলোর আকারের ক্রম বর্ণনা করো।
- ঘ) ২য় বৃত্তের কোন মৌলের <mark>তড়িৎ ঋণাত্মকতা সবচেয়ে বেশি, তা পরমাণুর আকারের সাহায্যে বিশ্লেষণ করো</mark>।

উত্তর

ক) আইসোটোপ কী?

বিভিন্ন ভর সংখ্যা বিশিষ্ট একই মৌলের পরমাণুসমূহকে পরস্পরের আইসোটোপ বলে।

যেমনঃ 1_1H , 2_1H , 3_1H

খ) কপারের ইলেকট্রন বিন্যাস সাধারণ নিয়ম মানে না কেন?

কপারের পারমাণবিক সংখ্যা 29 এবং এটির ইলেকট্রন বিন্যাস হলো নিম্নরূপ—

$$_{29}Cu \rightarrow 1s^2 \; 2s^2 \; 2p^6 \; 3s^2 \; 3p^6 \; 3d^{10} \; 4s^1$$

কপারের এই ইলেকট্রন বিন্যাস সাধারণ নিয়মের ব্যতিক্রম। সাধারণ নিয়মে কপারের ইলেকট্রন বিন্যাস হওয়ার কথা ছিল $3d^9 \, 4s^2$ কিন্তু অর্ধপূর্ণ ও পূর্ণ অরবিটাল অধিক স্থিতিশীল হওয়ার কারণে স্থিতিশীলতা অর্জনের জন্য কপারের ইলেকট্রন বিন্যাস $3d^{10} \, 4s^1$ হয়। তাই কপারের ইলেকট্রন বিন্যাস সাধারণ নিয়মের ব্যতিক্রম।

গ) পর্যায়ের কথা বিবেচনা করে ১ম বৃত্তের মৌলগুলোর আকারের ক্রম বর্ণনা করো।

উদ্দীপকের ১ম বৃত্তের মৌলগুলো পর্যায় সারণির ৩য় পর্যায়ের অন্তর্ভুক্ত। এদের মধ্যে—

Na এর পারমাণবিক সংখ্যা 11, Mg এর পারমাণবিক সংখ্যা 12, Al এর পারমাণবিক সংখ্যা 13 এবং Si এর পারমাণবিক সংখ্যা 14।

অতএব উপরোক্ত মৌলসমূহের মধ্যে Na সর্ববামে এবং Si সর্বডানে অবস্থিত। Mg এর অবস্থান Na এর ঠিক ডানে এবং Al এর অবস্থান Mg এর ঠিক ডানে ও Si এর ঠিক বামে। এখন আমরা জানি একই পর্যায়ের যতই বাম হতে ডান দিকে যাওয়া যায় মৌলসমূহের পারমাণবিক সংখ্যা ততই বৃদ্ধি পায়। সাথে সাথে পরমাণুর কক্ষপথে ইলেকট্রন সংখ্যাও বৃদ্ধি পায়। কিন্তু নতুন কোন কক্ষপথ সৃষ্টি হয় না। একই কক্ষপথ বিশিষ্ট পরমাণুসমূহের নিউক্লিয়াসে অধিক প্রোটন সংখ্যা ও কক্ষপথে অধিক ইলেকট্রন সংখ্যার মধ্যকার আকর্ষণ শক্তির মান অধিক। এই অধিক আকর্ষণ বলের প্রভাবে পরমাণুর আকার ছোট হয়ে আসে। তাই পর্যায়ের বাম হতে ডান দিকে অগ্রসর হলে পরমাণুর আকার হ্রাস পায়। সুতরাং উপরোক্ত শর্তমতে ১ম বৃত্তের মৌলসমূহের আকারের ক্রম হলো—

Na > Mg > Al > Si

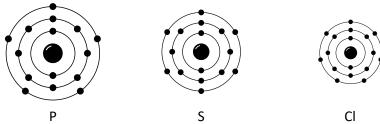
ঘ) ২য় বৃত্তের কোন মৌলের তড়িৎ ঋণাত্মকতা সবচেয়ে বেশি, তা পরমাণুর আকারের সাহায্যে বিশ্লেষণ করো।

উদ্দীপকের ২য় বৃত্তের মৌলসমূহ ৩য় পর্যায়ভুক্ত ফসফরাস (P), সালফার (S) এবং ক্লোরিন (Cl)। এদের মধ্যে P বামে, S মাঝখানে এবং Cl ডানে অবস্থিত। কোনো মৌল কর্তৃক সমযোজী যৌগের বন্ধন জোড় ইলেকট্রনকে নিজ দিকে আকর্ষণ করার ক্ষমতাকে ঐ মৌলের তড়িৎ ঋণাত্মকতা বলে। মৌলের তড়িৎ ঋণাত্মকতা একটি পর্যায়বৃত্ত ধর্ম।

এক্ষেত্রে একই পর্যায়ে বাম দিক থেকে ডান দিকে পারমাণবিক আকার হ্রাসের সাথে সাথে তড়িৎ ঋণাত্মকতা বৃদ্ধি পায়। সাধারণত পর্যায় সারণির একই পর্যায়ে বামদিক হতে ডানদিকে অগ্রসর হলে পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে কোনো নতুন শক্তিস্তরের যুক্ত হয় না। কিন্তু নিউক্লিয়াস কর্তৃক সর্বশেষ শক্তিস্তরের ইলেকট্রনের উপর আকর্ষণ শক্তি বৃদ্ধি পায়। ফলে পরমাণুর আকার ক্রমশ হ্রাস পায়। এজন্য সমযোজী বন্ধনের শোয়ারকৃত ইলেকট্রনের উপর নিউক্লিয়াসের আকর্ষণ ক্রমশ বৃদ্ধি পায়।

এক্ষেত্রে ৩য় পর্যায়ের P,S,Cl মৌলগুলোর আকার P হতে Cl পর্যন্ত ক্রমাম্বয়ে হ্রাস পায়। ফলে সমযোজী বন্ধনের শেয়ারকৃত ইলেকট্রনের প্রতি আকর্ষণ P হতে Cl পর্যন্ত ক্রমশ বৃদ্ধি পায়। তাই Cl এর তড়িৎ ঋণাত্মকতা P,S অপেক্ষা বেশি।

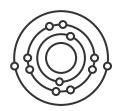
এক্ষেত্রে ক্রমটি হলো— P < S < Cl



ঘ) ২য় বৃত্তের কোন মৌলের তড়িৎ ঋণাত্মকতা সবচেয়ে বেশি, তা প্রমাণুর আকারের সাহায্যে বিশ্লেষণ করো।

এক্ষেত্রে ৩য় পর্যায়ের P,S,Cl মৌলগুলোর আকার P হতে Cl পর্যন্ত ক্রমাম্বয়ে হ্রাস পায়। ফলে সমযোজী বন্ধনের শেয়ারকৃত ইলেকট্রনের প্রতি আকর্ষণ P হতে Cl পর্যন্ত ক্রমশ বৃদ্ধি পায়। তাই Cl এর তড়িৎ ঋণাত্মকতা P,S অপেক্ষা বেশি।

এক্ষেত্রে ক্রমটি হলো— P < S < Cl



16 MINUTE SCHOOL

মোলের ধারণা ও রাসায়নিক গণনা

[ব. বো. '১৭ || প্রশ্ন-৮]

- ক) ক্যালামাইন আকরিকের সংকেত লেখ।
- খ) $^{39}_{19}K^+$ সংকেতটির তাৎপর্য লেখ।
- গ) $25.5g\ H_2$ তৈরিতে উদ্দীপকের মৌলটিকে কত গ্রাম HCl(l)'র মধ্যে যোগ করতে হবে?
- ঘ) উদ্দীপকের মৌলটির নাইট্রেট <mark>লব</mark>ণকে উত্তপ্ত করলে যে অবশেষ ও বাদামী বর্ণের গ্যাস পাওয়া যায় তার অণুর সংখ্যা সমান হবে কি? বিশ্লেষণ করো।

উত্তর

ক) ক্যালামাইন আকরিকের সংকেত লেখ।

ক্যালামাইন আকরিকের সংকেত হলো $ZnCO_3$ ।

খ) $^{39}_{19}K^+$ সংকেতটির তাৎপর্য লেখ।

 $^{39}_{19}K^+$ সংকেতটির K দ্বারা বুঝানো হয়েছে পটাসিয়াম মৌলকে।

এটির বাম পাশে উপরের দিকে 39 দ্বারা পটাসিয়ামের ভর সংখ্যাকে প্রকাশ করা হয়েছে।

আর বাম পাশের নিচের দিকের 19 দ্বারা পটাসিয়ামের পারমাণবিক সংখ্যাকে বুঝানো হয়েছে।

ডান পাশের উপরে + চিহ্ন দ্বারা একটি ইলেকট্রন ত্যাগ করে একক ধনাত্মক চার্জযুক্ত পটাসিয়াম আয়ন সৃষ্টি করাকে বোঝানো হয়েছে।

এতে প্রোটন সংখ্যা = 19; নিউট্রন সংখ্যা 39 - 19 = 20; ইলেকট্রনসংখ্যা প্রোটনসংখ্যা হতে এক কম হবে।

কারণ এতে নিট চার্জ $+\ 1$ । তাই এখানে ইলেকট্রন সংখ্যা $=\ 19-1-18$ টি।

গ) $25.5g~H_2$ তৈরিতে উদ্দীপকের মৌলটিকে কত গ্রাম HCl(l)'র মধ্যে যোগ করতে হবে?

উদ্দীপকের তথ্যমতে মৌলটি ম্যাগনেসিয়াম (Mg)। Mg, HCl এর সাথে নিম্নোক্তভাবে বিক্রিয়া করে—

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

$$24 g \qquad \qquad 2 g$$

বিক্রিয়া হতে, $2 g H_2$ তৈরিতে Mg যোগ করতে হয় 24 g

 \therefore 1 g H_2 তৈরিতে Mg যোগ করতে হয় = $\frac{24}{2}$ g

 \therefore 25.5 g H_2 তৈরিতে Mg যোগ করতে হয় = $\frac{24 \times 25.5}{2}$ g = 306 g

ঘ) উদ্দীপকের মৌলটির নাইট্রেট লবণকে উত্তপ্ত করলে যে অবশেষ ও বাদামী বর্ণের গ্যাস পাওয়া যায় তার অণুর সংখ্যা সমান হবে কি? বিশ্লেষণ করো।

উদ্দীপকের Mg মৌলটির নাইট্রে<mark>ট ল</mark>বণ $Mg(NO_3)_2$ কে উত্তপ্ত করলে নিম্নের বিক্রিয়াটি সম্পন্ন হয়—

$$2Mg(NO_3)_2 \xrightarrow{\Delta} 2N gO(s) + 4NO_2(g) + O_2(g)$$

বিক্রিয়া হতে, অবশেষ ও বাদামি বর্ণের গ্যাস যৌগ দুটি হলো যথাক্রমে MgO ও NO_2 ।

এক্ষেত্রে, 1 মোল MgO এ অণুর সংখ্যা $=6.023 imes 10^{23}$ টি

$$\therefore$$
 2 মোল MgO এ অণুর সংখ্যা $=6.023 imes 10^{23} imes 2$ টি $=1.2046 imes 10^{24}$ টি

আবার, 1 মোল NO_2 এ অণুর সংখ্যা $=6.023 imes 10^{23}$ টি

$$\therefore$$
 4 মোল NO_2 এ অণুর সংখ্যা $=6.023 imes 10^{23} imes 4$ টি $=2.4046 imes 10^{24}$ টি

গাণিতিকভাবে দেখা যায় যে, $Mg(NO_3)_2$ তাপীয় বিয়োজনে প্রাপ্ত এ অণুর সংখ্যা অবশেষ MgO এর অণুর সংখ্যার চেয়ে বাদামি বর্ণের গ্যাস NO_2 এর অণুর সংখ্যা বেশি। অর্থাৎ বিক্রিয়ায় অণুর সংখ্যা সমান হবে না।

রাসায়নিক বিক্রিয়া

 $NH_4Cl + Ca(OH)_2 \rightarrow A(g) + B + H_2O$

সমন্বিত অধ্যায় ৬ ও ৭ [ব.বো.'১৭ প্রশ্ন-৫]

- ক. নীল'স বোর কত সালে পরমাণু মডেল প্রদান করেন?
- খ. "পরমাণু বিদ্যুৎ নিরপেক্ষ"— উক্তিটি বুঝিয়ে দাও।
- গ. A যৌগটির 105 টি অণুর ভর নির্ণয় করো।
- ঘ. B যৌগের দ্রবণে সিলভার নাইট্রেট দ্রবণ যোগ করলে কোন ধরনের বিক্রিয়া ঘটবে— বিশ্লেষণ করো।

ক. নীল'স বোর কত সালে প<mark>রমাণু মডেল প্রদান করেন?</mark> নীল'স বোর ১৯১৩ সালে পরমাণুর মডেল প্রদান করেন।

খ. "পরমাণু বিদ্যুৎ নিরপেক্ষ"— উক্তিটি বুঝিয়ে দাও।

নিউক্লিয়াসে অবস্থিত প্রোটন ও নিউট্রনের মধ্যে প্রোটন ধনাত্মক চার্জযুক্ত এবং নিউট্রন চার্জবিহীন। আবার নিউক্লিয়াসের চারদিকে ইলেকট্রনসমূহ ঋণাত্মক আধানযুক্ত। পরমাণুতে প্রোটন ও ইলেকট্রনের সংখ্যা সমান এবং তাদের চার্জের মান সমান ও বিপরীত প্রকৃতির। ফলে সামগ্রিকভাবে পরমাণুতে চার্জের পরিমাণ শূন্য হয়। তাই পরমাণু বিদ্যুৎ নিরপেক্ষ।

গ. A যৌগটির 105 টি অণুর ভর নির্ণয় করো।

উদ্দীপকের বিক্রিয়াটি সম্পন্ন করে পাই—

$$2NH_4Cl + Ca(OH)_2 \rightarrow 2NH_3(g) + CaCl_2 + 2H_2O$$

(A)

বিক্রিয়া অনুসারে A যৌগটি হলো অ্যামোনিয়া (NH_3) । (B)

$$NH_3$$
 এর আণবিক ভর = $(14 + 3 \times 1) = 17 g$

অতএব 1mol অণু বা $6.02 imes 10^{23}$ টি NH_3 অণুর ভর = 17g

$$\therefore$$
 105 টি NH_3 অণুর ভর $=\left(\frac{17\times105}{6.02\times10^{23}}\right)g$
 $=2.965\times10^{-21}g$

সুতরাং, উদ্দীপকের A যৌগটি অ<mark>র্থাৎ NH_3 </mark> এর 105 টি অণুর ভর $2.965 imes10^{-21}g$ ।

ঘ. B যৌগের দ্রবণে সিলভার নাইট্রেট দ্রবণ যোগ করলে কোন ধরনের বিক্রিয়া ঘটবে- বিশ্লেষণ করো।

উদ্দীপকের বিক্রিয়াটিকে সম্পন্ন করে পাই—

$$NH_4Cl + Ca(OH)_2 \rightarrow NH_3(g) + CaCl_2 + 2H_2O$$
 (A)

(B)

এখানে B যৌগটি হলো $CaCl_2$ যা একটি ক্লোরাইড যৌগ। এতে সিলভার নাইট্রেট দ্রবণ যোগ করলে দধির ন্যায় সাদা সিলভার ক্লোরাইডের অধঃক্ষেপ উৎপন্ন হবে। এটি একটি অধঃক্ষেপণ বিক্রিয়া এবং এ বিক্রিয়াটি দ্বারা দ্রবণে ক্লোরাইড আয়নের শনাক্তকরণ করা হয়।

$$CaCl_2 + 2AgNO_3 \rightarrow 2AgCl \downarrow + Ca(NO_3)_2$$

অধঃক্ষেপ

ঘ. B যৌগের দ্রবণে সিলভার নাইট্রেট দ্রবণ যোগ করলে কোন ধরনের বিক্রিয়া ঘটবে— বিশ্লেষণ করো।

উদ্দীপকের বিক্রিয়াটিকে সম্পন্ন করে পাই—

$$NH_4Cl + Ca(OH)_2 \rightarrow NH_3(g) + CaCl_2 + 2H_2O$$

(*A*)

(*B*)

এখানে B যৌগটি হলো $CaCl_2$ যা একটি ক্লোরাইড যৌগ। এতে সিলভার নাইট্রেট দ্রবণ যোগ করলে দধির ন্যায় সাদা সিলভার ক্লোরাইডের অধঃক্ষেপ উৎপন্ন হবে। এটি একটি অধঃক্ষেপণ বিক্রিয়া এবং এ বিক্রিয়াটি দ্বারা দ্রবণে ক্লোরাইড আয়নের শনাক্তকরণ করা হয়।

$CaCl_2 + 2AgNO_3 \rightarrow 2AgCl \downarrow + Ca(NO_3)_2$

অধঃক্ষেপ

এই বিক্রিয়ায় $AgNO_3$ এর Ag^+ আয়ন এবং $CaCl_2$ এর Cl^- আয়ন যুক্ত হয়ে AgCl এর অধঃক্ষেপ তৈরি করে। এই বিক্রিয়ায় কোনো ইলেকট্রন স্থানান্তর হয় না।

সুতরাং উপরোক্ত বর্ণনার ভিত্তিতে বলা যায়, উদ্দীপকের B যৌগ অর্থাৎ $CaCl_2$ এর দ্রবণে $AgNO_3$ দ্রবণ যোগ করলে অধঃক্ষেপণ বিক্রিয়া সংঘটিত হয়।