10 Minute School
Log in

দোলক ঘড়ি সংক্রান্ত কয়েকটি ঘটনা, সরল দোলন গতি ও বৃত্তাকার গতির সম্পর্ক 

দোলক ঘড়ি সংক্রান্ত কয়েকটি ঘটনা (A few events about the pendulum clock)

(ক) দোলক ঘড়িকে পাহাড়ের উপর নিয়ে গেলে: আমরা দোলক ঘড়ি বলতে একটি সেকেন্ড দোলককে বুঝি যার দোলনকাল 2 সেকেন্ড। পাহাড়ের উপরে অভিকর্ষজ ত্বরণের মান ভূ-পৃষ্ঠে অভিকর্ষজ মানের চেয়ে কম। যেহেতু দোলকের দোলনকাল TT অভিকর্ষজ ত্বরণ gg-এর বর্গমূলের ব্যস্তানুপাতিক, অর্থাৎ T1gT \propto \frac{1}{\sqrt{g}} , তাই পাহাড়ের উপর gg-এর মান কমে যাওয়ায় দোলনকাল বেড়ে যাবে। অর্থাৎ 2 s এর চেয়ে বেশি হবে। যেহেতু দোলনকাল বেড়ে যায় তাই ভূ-পৃষ্ঠ অপেক্ষা পাহাড়ের চূড়ায় দোলক ঘড়ি সময় হারাবে বা ধীরে চলবে। 

(খ) দোলক ঘড়িকে খনির ভিতরে নিয়ে যাওয়া হলে: খনির ভিতরে অভিকর্ষজ ত্বরণের মান ভূ-পৃষ্ঠে অভিকর্ষজ ত্বরণের মানের চেয়ে কম। যেহেতু দোলকের দোলনকাল T অভিকর্ষজ ত্বরণ gg-এর বর্গমূলের ব্যস্তানুপাতিক অর্থাৎ T1gT \propto \frac{1}{\sqrt{g}} , তাই খনির ভিতরে gg-এর মান কমে যাওয়ায় দোলনকাল বেড়ে যাবে অর্থাৎ 2 s এর চেয়ে বেশি হবে।

যেহেতু খনির ভিতরে দোলনকাল বেড়ে যায় তাই ভূ-পৃষ্ঠ অপেক্ষা ভূ-অভ্যন্তরে দোলক ঘড়ি সময় হারাবে বা ধীরে চলবে।

পৃথিবীর কেন্দ্রে যেহেতু অভিকর্ষজ ত্বরণের মান শূন্য তাই তাত্ত্বিকভাবে দোলনকাল অসীম হবে। অর্থাৎ ভূ-কেন্দ্রে সরল দোলক দুলবে না।

সেকেন্ড দোলক (Second Pendulum) 

সংজ্ঞা : যে সরল দোলকের দোলনকাল দুই সেকেন্ড অর্থাৎ যে দোলকের এক প্রান্ত থেকে অপর প্রান্তে যেতে এক সেকেন্ড সময় লাগে তাকে সেকেন্ড দোলক বলে।

সেকেন্ড দোলক 1 সেকেন্ডে একটি অর্ধদোলন সম্পন্ন করে।

সেকেন্ড দোলকের দৈর্ঘ্য(The length of  second pendulum)

সেকেন্ড দোলকের দোলনকাল, T=2sT=2s

আমরা জানি, সরল দোলকের দোলনকাল, T=2πLgT=2 \pi \sqrt{\frac{L}{g}}

সেকেন্ড দোলকের জন্য, 2s=2πLg2 s=2 \pi \sqrt{\frac{L}{g}}

বা,L=gπ2s2L=\frac{g}{\pi^{2}} s^{2}

সুতরাং দেখা যায় যে, সেকেন্ড দোলকের দৈর্ঘ্য অভিকর্ষজ ত্বরণের উপর নির্ভর করে সেকেন্ড দোলকের দৈর্ঘ্য অভিকর্ষজ ত্বরণের সমানুপাতিক

সরল দোলন গতি ও বৃত্তাকার গতির সম্পর্ক (Relation Between Simple Harmonic Motion and Circular Motion)

একটি কণা PP সুষম কৌণিক দ্রুতি ω\omega  নিয়ে x0x_{0} , ব্যাসার্ধের একটি বৃত্তাকার পথে গতিশীল। আদিতে অর্থাৎ t = 0t = 0 সময়ে কণাটি, RR বিন্দুতে এবং tt সেকেন্ড পর কণাটির অবস্থান PP বিন্দুতে। BCBC ব্যাসের উপর PP বিন্দুর অভিক্ষেপ হলো AlAl বৃত্তের কেন্দ্র OO থেকে AA  বিন্দুতে কণাটির সরণ হলো

দোলক ঘড়ি সংক্রান্ত কয়েকটি ঘটনা, সরল দোলন গতি ও বৃত্তাকার গতির সম্পর্ক PP কণাটি যখন বৃত্তাকার পথে চলতে থাকে তখন ব্যাস BCBC এর উপর এর অভিক্ষেপ AA বিন্দুটি BCBC ব্যাস বরাবর স্পন্দিত হতে থাকে। এ ক্ষেত্রে কণাটির বেগ, v=dx dt=ωx0cosωtv=\frac{\mathrm{d} x}{\mathrm{~d} t}=\omega x_{0} \cos \omega t

এবং ত্বরণ, a=dv dt=ω2x0sinωt=ω2xa=\frac{\mathrm{d} v}{\mathrm{~d} t}=-\omega^{2} x_{0} \sin \omega t=-\omega^{2} x

সুতরাং AA বিন্দুটি সুষম বৃত্তাকার গতির কৌণিক দ্রুতির সমান কৌণিক কম্পাঙ্ক এবং T=2T=2 পর্যায়কাল নিয়ে সরল দোলন গতিতে স্পন্দিত হতে থাকে।

যখন PP কণাটি সুষম কৌণিক দ্রুতি নিয়ে বৃত্তাকার পথে চলতে থাকে, তখন 0 বিন্দু থেকে AA বিন্দুর সরণের পরিবর্তন চিত্রে দেখানো হলো। চিত্র থেকে দেখা যায় যে, সরল দোলন গতির নিম্নোক্ত উপায়ে সুষম বৃত্তাকার গতির সাথে সম্পর্কিত। 

১. সুষম কৌণিক দ্রুতিতে গতিশীল কোনো কণার ক্ষেত্রে বৃত্তাকার পথের ব্যাসের উপর কণাটির অভিক্ষেপ সরল দোলন গতিসম্পন্ন হয়। 

২. সরল দোলন গতির কৌণিক কম্পাঙ্ক আর সুষম বৃত্তাকার গতির কৌণিক দ্রুতি একই হয়। 

৩. সরল দোলন গতি এবং সুষম বৃত্তাকার গতির পর্যায়কাল একই।

৪. সরল দোলন গতির বিস্তার বৃত্তের ব্যাসার্ধের সমান।